scholarly journals The secrets of the stability of the HIV-1 capsid

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Martin Obr ◽  
Hans-Georg Kräusslich

Structural and biophysical studies help to follow the disassembly of the HIV-1 capsid in vitro, and reveal the role of a small molecule called IP6 in regulating capsid stability.

2019 ◽  
Vol 28 (5) ◽  
pp. 974-981 ◽  
Author(s):  
Armin Badre ◽  
David T. Axford ◽  
Sara Banayan ◽  
James A. Johnson ◽  
Graham J.W. King

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fengjie Jiang ◽  
Xiaozhu Tang ◽  
Chao Tang ◽  
Zhen Hua ◽  
Mengying Ke ◽  
...  

AbstractN6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.


2000 ◽  
Vol 74 (23) ◽  
pp. 11055-11066 ◽  
Author(s):  
Åsa Öhagen ◽  
Dana Gabuzda

ABSTRACT The Vif protein of human immunodeficiency virus type 1 (HIV-1) is important for virion infectivity. Previous studies have shown thatvif-defective virions exhibit structural abnormalities in the virus core and are defective in the ability to complete proviral DNA synthesis in acutely infected cells. We developed novel assays to assess the relative stability of the core in HIV-1 virions. Using these assays, we examined the role of Vif in the stability of the HIV-1 core. The integrity of the core was examined following virion permeabilization or removal of the lipid envelope and treatment with various triggers, including S100 cytosol, deoxynucleoside triphosphates, detergents, NaCl, and buffers of different pH to mimic aspects of the uncoating and disassembly process which occurs after virus entry but preceding or during reverse transcription.vif mutant cores were more sensitive to disruption by all triggers tested than wild-type cores, as determined by endogenous reverse transcriptase (RT) assays, biochemical analyses, and electron microscopy. RT and the p7 nucleocapsid protein were released more readily from vif mutant virions than from wild-type virions, suggesting that the internal nucleocapsid is less stably packaged in the absence of Vif. Purified cores could be isolated from wild-type but not vif mutant virions by sedimentation through detergent-treated gradients. These results demonstrate that Vif increases the stability of virion cores. This may permit efficient viral DNA synthesis by preventing premature degradation or disassembly of viral nucleoprotein complexes during early events after virus entry.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Sanela Rankovic ◽  
Ruben Ramalho ◽  
Christopher Aiken ◽  
Itay Rousso

ABSTRACTThe RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed in a cone-shaped capsid shell that disassembles following cell entry via a process known as uncoating. During HIV-1 infection, the capsid is important for reverse transcription and entry of the virus into the target cell nucleus. The small molecule PF74 inhibits HIV-1 infection at early stages by binding to the capsid and perturbing uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. Here, we show, using atomic force microscopy (AFM), that binding of PF74 to recombinant capsid-like assemblies and to HIV-1 isolated cores stabilizes the capsid in a concentration-dependent manner. At a PF74 concentration of 10 μM, the mechanical stability of the core is increased to a level similar to that of the intrinsically hyperstable capsid mutant E45A. PF74 also prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores treated with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, and a cap-like structure dissociated from the narrow end of the core. Moreover, the internal coiled structure that was observed to form during reverse transcriptionin vitropersisted throughout the duration of the measurement (∼24 h). Our results provide direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice, thereby permitting reverse transcription while interfering with a late step in uncoating.IMPORTANCEThe capsid-binding small molecule PF74 inhibits HIV-1 infection at early stages and perturbs uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. We recently introduced time-lapse atomic force microscopy to study the morphology and physical properties of HIV-1 cores during the course of reverse transcription. Here, we apply this AFM methodology to show that PF74 prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, but a cap-like structure dissociated from the narrow end of the core HIV-1. Our result provides direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Priyanka ◽  
Renu Wadhwa ◽  
Rituparna Chaudhuri ◽  
Tapas Chandra Nag ◽  
Pankaj Seth

Abstract Background In human immunodeficiency virus-1 (HIV-1) infection, activation of astrocytes induces imbalance in physiological functions due to perturbed astrocytic functions that unleashes toxicity on neurons. This leads to inflammatory response finally culminating into neurocognitive dysfunction. In neuroAIDS, HIV-1 protein, transactivator of transcription (Tat) is detected in the cerebrospinal fluid of infected patients. Mortalin, a multifunctional protein, has anti-inflammatory role following its activation in various stress conditions. Recent studies demonstrate downregulation of mortalin in neurodegenerative diseases. Here, we explored the mechanisms of mortalin in modulating HIV-1 Tat-mediated neuroinflammation. Methods Expression of mortalin in autopsy section in normal and diseased individuals were examined using immunohistochemistry. To decipher the role of mortalin in HIV-1 Tat-induced activation, human fetal brain-derived astrocytes were transiently transfected with Tat and mortalin using expression vectors. HIV-1 Tat-mediated damage was analyzed using RT-PCR and western blotting. Modulatory role of mortalin was examined by coexpressing it with Tat, followed by examination of mitochondrial morphodynamics using biochemical assay and confocal and electron microscopy. Extracellular ATP release was monitored using luciferase assay. Neuroinflammation in astrocytes was examined using flow cytometry, dye based study, immunocytochemistry, immunoprecipitation, and western blotting. Indirect neuronal damage was also analyzed. Results HIV-1 Tat downregulates the expression of mortalin in astrocytes, and this is corroborated with autopsy sections of HIV-1 patients. We found that overexpression of mortalin with Tat reduced inflammation and also rescued astrocytic-mediated neuronal death. Using bioinformatics, we discovered that binding of mortalin with Tat leads to Tat degradation and rescues the cell from neuroinflammation. Blocking of proteosomal pathway rescued the Tat degradation and revealed the ubiquitination of Tat. Conclusion Overall, our data demonstrated the protective role of mortalin in combating HIV-1 Tat-mediated damage. We also showed that mortalin could degrade Tat through direct binding with HIV-1 Tat. Overexpression of mortalin in the presence of Tat could significantly reduce cytotoxic effects of Tat in astrocytes. Indirect neuronal death was also found to be rescued. Our in vitro findings were validated as we found attenuated expression of mortalin in the autopsy sections of HIV-1 patients.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 650 ◽  
Author(s):  
Wlaa Assi ◽  
Tomoya Hirose ◽  
Satoshi Wada ◽  
Ryosuke Matsuura ◽  
Shin-nosuke Takeshima ◽  
...  

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1082-1082 ◽  
Author(s):  
Camelia Iancu-Rubin ◽  
Mosoyan Goar ◽  
Ronald Hoffman

Abstract Abstract 1082 Megakaryocyte (MK) development is characterized by polyploidization, cytoplasmic maturation and proplatelet formation, which culminates in the release of platelets into the circulation. The tumor suppressor p53 plays a critical role in the regulation of both cell cycle and apoptosis; its function is tightly controlled by the murine double minute (MDM2) protein which facilitates p53 degradation and inhibits p53 transcriptional activity. MK ploidy results from a disruption of normal cell cycle progression termed endomitosis while platelet release is believed to depend on apoptotic processes. The role of p53-MDM2 in MK in these two processes has not been clearly defined. A small molecule RG7112, which disrupts MDM2-p53 interaction, has shown promising anti-tumor effects in phase I clinical trials. This beneficial outcome has, however, been associated with the development of thrombocytopenia. We, therefore, used RG7112 as pharmacological probe to examine the effects of disruption of the MDM2-p53 regulatory loop on MK. We determined the effects of RG7112 on primary human MK by utilizing an in vitro system in which MK were generated from BM-derived CD34+ cells. We first demonstrated that both p53 and MDM2 transcripts are up-regulated as MK differentiation progresses. The ability of CD34+ cells to proliferate in the absence or presence of various concentrations of RG7112 was then evaluated both in liquid cultures and in CFU-MK colony assays. CD34+ cells exposed to 10 μM RG7112 for 7 days generated 70% fewer viable cells as compared to control cells exposed to the inactive form of the drug (p value = 0.0038). Furthermore, CD34+ cells treated with RG7112 formed up to 40% less CFU-MK colonies as compared to untreated cells. An assessment of apoptosis of MK precursors generated in the presence of RG7112 revealed that 69.5+2.1% were Annexin V positive as compared to 31.5+3.5% present in control cultures. These findings are consistent with the previously reported role of RG7112 in inducing p53 activation and apoptosis. Interestingly, phenotypical characterization of the viable cells generated under identical culture conditions, showed that RG7112 treatment did not interfere with the ability of CD34+ cells to acquire markers of MK differentiation during the first 7 days of culture since similar degrees of CD41 and CD42 expression were observed in the absence and in the presence of the drug. Likewise, exposure of MK precursors to the drug for 7 additional days (i.e. later stages of maturation) did not influence CD41 and CD42 expression. By contrast, cells differentiated in the presence of 5 μM RG7112 generated 50% fewer polyploid MK with greater than 4N DNA content as compared to those treated with the inactive form of the drug. Moreover, the negative effects on ploidy were associated with p53 activation, as assessed by the increased levels of p21 protein, a direct target of p53 which is known to limit polyploidization of primary MK. Finally, platelets generated in vitro were analyzed phenotypically and quantitated by dual labeling with anti-CD41 antibodies and thiazole orange (TO). The number of CD41+/TO+platelets derived from MK generated in the presence of RG7112 was reduced by 22% as compared to control. Based on these findings, we conclude that RG7112 impacts megakaryopoiesis by two potential mechanisms: 1) Impairing the ability of CD34+ cells to generate MK precursors due to increased apoptosis; 2) Limiting polyploidization during the late stages of development due to phamacological activation of p53. A combination of these two effects may provide an explanation for thrombocytopenia observed in patients receiving this drug and suggests that p53 plays an important role in normal human thrombocytopoiesis. Disclosures: Iancu-Rubin: Roche: Research Funding. Hoffman:Roche: Research Funding.


2011 ◽  
Vol 56 (1) ◽  
pp. 341-351 ◽  
Author(s):  
Xiaofan Lu ◽  
Li Liu ◽  
Xu Zhang ◽  
Terrence Chi Kong Lau ◽  
Stephen Kwok Wing Tsui ◽  
...  

ABSTRACTNonnucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components of antiretroviral therapy drug regimen against human immunodeficiency virus type 1 (HIV-1) replication. We previously described a newly synthesized small molecule, 10-chloromethyl-11-demethyl-12-oxo-calanolide A (F18), a (+)-calanolide A analog, as a novel anti-HIV-1 NNRTI (H. Xue et al., J. Med. Chem. 53:1397–1401, 2010). Here, we further investigated its antiviral range, drug resistance profile, and underlying mechanism of action. F18 consistently displayed potent activity against primary HIV-1 isolates, including various subtypes of group M, circulating recombinant form (CRF) 01_AE, and laboratory-adapted drug-resistant viruses. Moreover, F18 displayed distinct profiles against 17 NNRTI-resistant pseudoviruses, with an excellent potency especially against one of the most prevalent strains with the Y181C mutation (50% effective concentration, 1.0 nM), which was in stark contrast to the extensively used NNRTIs nevirapine and efavirenz. Moreover, we induced F18-resistant viruses byin vitroserial passages and found that the mutation L100I appeared to be the dominant contributor to F18 resistance, further suggesting a binding motif different from that of nevirapine and efavirenz. F18 was nonantagonistic when used in combination with other antiretrovirals against both wild-type and drug-resistant viruses in infected peripheral blood mononuclear cells. Interestingly, F18 displayed a highly synergistic antiviral effect with nevirapine against nevirapine-resistant virus (Y181C). Furthermore,in silicodocking analysis suggested that F18 may bind to the HIV-1 reverse transcriptase differently from other NNRTIs. This study presents F18 as a new potential drug for clinical use and also presents a new mechanism-based design for future NNRTI.


Sign in / Sign up

Export Citation Format

Share Document