scholarly journals Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tianfa Xie ◽  
Sarah R St Pierre ◽  
Nonthakorn Olaranont ◽  
Lauren E Brown ◽  
Min Wu ◽  
...  

A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the 'condensation tendency'. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e., an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary.

2020 ◽  
Author(s):  
Tianfa Xie ◽  
Sarah R. St. Pierre ◽  
Nonthakorn Olaranont ◽  
Lauren E. Brown ◽  
Min Wu ◽  
...  

ABSTRACTIt has been found that many types of cells form nematic symmetry on confined planar substrates. Such observation has been satisfactorily explained by modeling cells as crowded self-propelled rods. In this work, we report that rat embryonic fibroblast (REF) cells when confined in circular mesoscale patterns, form a new type of symmetry where cells align radially at the boundary. Unlike NIH-3T3 and MDCK monolayers, the REF monolayer presents a supracellular actin gradient with isotropic meshwork. In addition, the contractile REF cells present strong adhesive interactions with neighboring cells, which confers the monolayer with significant condensation tendency. We found the loss of condensation tendency by inhibiting the cell contractility or disrupting cell-cell adhesion led to the disappearance of the radial alignment. In theory, we found the prestretch due to condensation tendency with differential cell stiffness is sufficient to explain the new symmetry within a confined tissue continuum.


2021 ◽  
Vol 22 (11) ◽  
pp. 5608
Author(s):  
Markéta Havrdová ◽  
Iztok Urbančič ◽  
Kateřina Bartoň Tománková ◽  
Lukáš Malina ◽  
Janez Štrancar ◽  
...  

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.


2019 ◽  
Vol 34 (8) ◽  
pp. 1536-1550 ◽  
Author(s):  
A Christine Kauerhof ◽  
Nour Nicolas ◽  
Sudhanshu Bhushan ◽  
Eva Wahle ◽  
Kate A Loveland ◽  
...  

Abstract STUDY QUESTION Does activin A contribute to testicular fibrosis under inflammatory conditions? SUMMARY ANSWER Our results show that activin A and key fibrotic proteins are increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis and in murine experimental autoimmune orchitis (EAO) and that activin A stimulates fibrotic responses in peritubular cells (PTCs) and NIH 3T3 fibroblasts. WHAT IS KNOWN ALREADY Fibrosis is a feature of EAO. Activin A, a regulator of fibrosis, was increased in testes of mice with EAO and its expression correlated with severity of the disease. STUDY DESIGN, SIZE, DURATION This is a cross-sectional and longitudinal study of adult mice immunized with testicular homogenate (TH) in adjuvant to induce EAO, collected at 30 (n = 6), 50 (n = 6) and 80 (n = 5) days after first immunization. Age-matched mice injected with adjuvant alone (n = 14) and untreated mice (n = 15) were included as controls. TH-immunized mice with elevated endogenous follistatin, injected with a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of follistatin (rAAV-FST315; n = 3) or vector with an empty cassette (empty vector controls; n = 2) 30 days prior to the first immunization, as well as appropriate adjuvant (n = 2) and untreated (n = 2) controls, were also examined. Human testicular biopsies showing focal inflammatory lesions associated with impaired spermatogenesis (n = 7) were included. Biopsies showing intact spermatogenesis without inflammation, from obstructive azoospermia patients, served as controls (n = 7). Mouse primary PTC and NIH 3T3 fibroblasts were stimulated with activin A and follistatin 288 (FST288) to investigate the effect of activin A on the expression of fibrotic markers. Production of activin A by mouse primary Sertoli cells (SCs) was also investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular RNA and protein extracts collected from mice at days 30, 50 and 80 after first immunization were used for analysis of fibrotic marker genes and proteins, respectively. Total collagen was assessed by hydroxyproline assay and fibronectin; collagen I, III and IV, α-smooth muscle actin (α-SMA) expression and phosphorylation of suppressor of mothers against decapentaplegic (SMAD) family member 2 were measured by western blot. Immunofluorescence was used to detect fibronectin. Fibronectin (Fn), αSMA (Acta2), collagen I (Col1a2), III (Col3a1) and IV (Col4a1) mRNA in PTC and NIH 3T3 cells treated with activin A and/or FST288 were measured by quantitative RT-PCR (qRT-PCR). Activin A in SC following tumour necrosis factor (TNF) or FST288 stimulation was measured by ELISA. Human testicular biopsies were analysed by qRT-PCR for PTPRC (CD45) and activin A (INHBA), hydroxyproline assay and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Production of activin A by SC was stimulated by 25 and 50 ng/ml TNF (P < 0.01, P < 0.001, respectively) as compared to untreated cells. INHBA mRNA was increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis, compared with control biopsies (P < 0.05), accompanied by increased total collagen (P < 0.01) and fibronectin deposition. Total testicular collagen (P < 0.0001) and fibronectin protein expression (P < 0.05) were also increased in EAO, and fibronectin expression was correlated with the severity of the disease (r = 0.9028). In animals pre-treated with rAAV-FST315 prior to immunization with TH, protein expression of fibronectin was comparable to control. Stimulation of PTC and NIH 3T3 cells with activin A increased fibronectin mRNA (P < 0.05) and the production of collagen I (P < 0.001; P < 0.01) and fibronectin (P < 0.05). Moreover, activin A also increased collagen IV mRNA (P < 0.05) in PTC, while αSMA mRNA (P < 0.01) and protein (P < 0.0001) were significantly increased by activin A in NIH 3T3 cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION A limited number of human testicular specimens was available for the study. Part of the study was performed in vitro, including NIH 3T3 cells as a surrogate for testicular fibroblasts. WIDER IMPLICATIONS OF THE FINDINGS Resident fibroblasts and PTC may contribute to the progression of testicular fibrosis following inflammation, and activin A is implicated as a key mediator of this process. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Health and Medical Research Council of Australia, the Victorian Government’s Operational Infrastructure Support Program and the International Research Training Group between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK 1871/1–2) on `Molecular pathogenesis on male reproductive disorders’ funded by the Deutsche Forschungsgemeinschaft and Monash University. The authors declare no competing financial interests.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Marina L. C. Caxito ◽  
Rachell R. Correia ◽  
Anne Caroline C. Gomes ◽  
Graça Justo ◽  
Marsen G. P. Coelho ◽  
...  

Xanthosoma sagittifoliumSchott is a herb of the Araceae family, popularly known as taioba, which is consumed as food in some regions of Brazil, Africa, and Asia. This species has already been evaluated for the antifungal activities. However, based on its potential antitumor activity, the present study further aimed to examine the antitumor, as well as chelation, activity ofX. sagittifoliumleaf extract. Results showed that hydroethanolic extract ofX. sagittifoliumleaves (HEXs-L) exhibits cytotoxic effects against the immortalized line of human T-lymphocytic (Jurkat) and myelogenous (K562) leukemia cells, but not nontumor RAW 264.7 macrophages or NIH/3T3 fibroblasts. HEXs-L inhibited 50.3% of Jurkat cell proliferation, reducing by 20% cells in G2/M phase, but increasing cells in sub-G1 phase, thereby inducing apoptosis by 54%. In addition, HEXs-L inhibited NO production by 59%, as determined by Griess reaction, and chelated 93.8% of free Fe(II), as demonstrated by ferrozine assay. Phytochemical studies were carried out by ESI-MS, identifying apigenin di-C-glycosides as major compounds. Overall, this work revealed that leaf extract ofXanthosoma sagittifoliumpresented chelating activity andin vitroantitumor activity, arresting cell cycle and inducing apoptosis of leukemia cells, thus providing evidence that taioba leaves may have practical application in cancer therapy.


FEBS Letters ◽  
1992 ◽  
Vol 312 (2-3) ◽  
pp. 223-228 ◽  
Author(s):  
Sylvie Hermouet ◽  
Philippe de Mazancourt ◽  
Allen M. Spiegel ◽  
Marilyn Gist Farquhar ◽  
Bridget S. Wilson

1999 ◽  
Vol 19 (7) ◽  
pp. 4739-4749 ◽  
Author(s):  
Elma R. Fernandes ◽  
Robert J. Rooney

ABSTRACT The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Allan Ramirez ◽  
Erin N. Ballard ◽  
Jesse Roman

Transforming growth factorβ1 (TGFβ1) promotes fibrosis by, among other mechanisms, activating quiescent fibroblasts into myofibroblasts and increasing the expression of extracellular matrices. Recent work suggests that peroxisome proliferator-activated receptorγ(PPARγ) is a negative regulator of TGFβ1-induced fibrotic events. We, however, hypothesized that antifibrotic pathways mediated by PPARγare influenced by TGFβ1, causing an imbalance towards fibrogenesis. Consistent with this, primary murine primary lung fibroblasts responded to TGFβ1 with a sustained downregulation of PPARγtranscripts. This effect was dampened in lung fibroblasts deficient in Smad3, a transcription factor that mediates many of the effects of TGFβ1. Paradoxically, TGFβ1 stimulated the activation of the PPARγgene promoter and induced the phosphorylation of PPARγin primary lung fibroblasts. The ability of TGFβ1 to modulate the transcriptional activity of PPARγwas then tested in NIH/3T3 fibroblasts containing a PPARγ-responsive luciferase reporter. In these cells, stimulation of TGFβ1 signals with a constitutively active TGFβ1 receptor transgene blunted PPARγ-dependent reporter expression induced by troglitazone, a PPARγactivator. Overexpression of PPARγprevented TGFβ1 repression of troglitazone-induced PPARγ-dependent gene transcription, whereas coexpression of PPARγand Smad3 transgenes recapitulated the TGFβ1 effects. We conclude that modulation of PPARγis controlled by TGFβ1, in part through Smad3 signals, involving regulation of PPARγexpression and transcriptional potential.


1992 ◽  
Vol 12 (9) ◽  
pp. 3750-3756 ◽  
Author(s):  
M L Cutler ◽  
R H Bassin ◽  
L Zanoni ◽  
N Talbot

Using an expression cloning assay, we have isolated a novel cDNA, referred to as rsp-1, which suppresses the v-Ras-transformed phenotype. When introduced into NIH 3T3 fibroblasts under the control of a metallothionein promoter, rsp-1 confers resistance to v-Ras, but not to v-Mos or v-Src, and inhibits growth of the cells. The rsp-1 cDNA contains a 831-bp open reading frame encoding a 277-amino-acid leucine-rich protein. The rsp-1 cDNA exhibits no significant homology to sequences in the DNA data bases. However, searches of the protein data bases revealed that it contains a series of leucine-based repeats which are homologous to the leucine repeats found in the regulatory region of the yeast adenylyl cyclase. rsp-1 specific RNA is detectable in a wide variety of cell lines and tissues, and the gene is conserved among eukaryotic species. These data suggest that rsp-1 plays a role in Ras signal transduction.


1991 ◽  
Vol 5 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Päivi J. Koskinen ◽  
Lea Sistonen ◽  
Rodrigo Bravo ◽  
Kari Alitalo

Sign in / Sign up

Export Citation Format

Share Document