Very Low Leakage Current of High Band-Gap Al2O3Stacked on TiO2/InP Metal–Oxide–Semiconductor Capacitor with Sulfur and Hydrogen Treatments

2012 ◽  
Vol 51 (8R) ◽  
pp. 081201
Author(s):  
Chih-Feng Yen ◽  
Ming-Kwei Lee
Author(s):  
Dong Gun Kim ◽  
Cheol Hyun An ◽  
Sanghyeon Kim ◽  
Dae Seon Kwon ◽  
Junil Lim ◽  
...  

Atomic layer deposited TiO2- and Al2O3-based high-k gate insulator (GI) were examined for the Ge-based metal-oxide-semiconductor capacitor application. The single-layer TiO2 film showed a too high leakage current to be...


2015 ◽  
Vol 821-823 ◽  
pp. 177-180 ◽  
Author(s):  
Chiaki Kudou ◽  
Hirokuni Asamizu ◽  
Kentaro Tamura ◽  
Johji Nishio ◽  
Keiko Masumoto ◽  
...  

Homoepitaxial layers with different growth pit density were grown on 4H-SiC Si-face substrates by changing C/Si ratio, and the influence of the growth pit density on Schottky barrier diodes and metal-oxide-semiconductor capacitors were investigated. Even though there were many growth pits on the epi-layer, growth pit density did not affect the leakage current of Schottky barrier diodes and lifetime of constant current time dependent dielectric breakdown. By analyzing the growth pit shape, the aspect ratio of the growth pit was considered to be the key factor to the leakage current of the Schottky barrier diodes and the lifetime of metal-oxide-semiconductor capacitors.


2019 ◽  
Vol 467-468 ◽  
pp. 1161-1169 ◽  
Author(s):  
Min Baik ◽  
Hang-Kyu Kang ◽  
Yu-Seon Kang ◽  
Kwang-Sik Jeong ◽  
Changmin Lee ◽  
...  

2014 ◽  
Vol 13 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Manorama Chauhan ◽  
Ravindra Singh Kushwah ◽  
Pavan Shrivastava ◽  
Shyam Akashe

In the world of Integrated Circuits, complementary metal–oxide–semiconductor (CMOS) has lost its ability during scaling beyond 50 nm. Scaling causes severe short channel effects (SCEs) which are difficult to suppress. FinFET devices undertake to replace usual Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) because of their better ability in controlling leakage and diminishing SCEs while delivering a strong drive current. In this paper, we present a relative examination of FinFET with the double gate MOSFET (DGMOSFET) and conventional bulk Si single gate MOSFET (SGMOSFET) by using Cadence Virtuoso simulation tool. Physics-based numerical two-dimensional simulation results for FinFET device, circuit power is presented, and classifying that FinFET technology is an ideal applicant for low power applications. Exclusive FinFET device features resulting from gate–gate coupling are conversed and efficiently exploited for optimal low leakage device design. Design trade-off for FinFET power and performance are suggested for low power and high performance applications. Whole power consumptions of static and dynamic circuits and latches for FinFET device, believing state dependency, show that leakage currents for FinFET circuits are reduced by a factor of over ~ 10X, compared to DGMOSFET and ~ 20X compared with SGMOSFET.


Sign in / Sign up

Export Citation Format

Share Document