scholarly journals Temperature-mediated feeding between spring-associated and riverine-associated congeners, with implications for community segregation

PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6144 ◽  
Author(s):  
Cody A. Craig ◽  
Jeremy D. Maikoetter ◽  
Timothy H. Bonner

Freshwater fish communities segregate along water temperature gradients attributed in part to temperature-mediated physiological processes that affect species fitness. In spring complexes of southwest USA, spring complexes with narrow range of water temperatures are dominated by a community of fishes (i.e., spring-associated fishes), whereas riverine habitats with wide-range of water temperatures are dominated by a different community of fishes (i.e., riverine-associated fishes). The purpose of this study was to test a prediction of the concept that temperature-mediated species performance is a mechanism in maintaining community segregation. We predicted that a spring-associated fish (Largespring Gambusia Gambusia geiseri) would feed first and more often in a pairing with a riverine-associated fish (Western Mosquitofish G. affinis) at an average spring temperature (23 °C) and that the riverine-associated fish would feed first and more often in a pairing with the spring-associated fish at a warm riverine temperature (30 °C). Among four trails consisting of 30 pairings, at the spring complex temperature (23 °C), Largespring Gambusia had a greater number of first feeds (mean ± 1 SD, 5.0 ± 0.82) than Western Mosquitofish (2.5 ± 1.73) and had greater mean number of total feeds (1.9 ± 0.31) than Western Mosquitofish (0.81 ± 0.70). At the riverine environment temperature (30 °C), Western Mosquitofish had a greater number of first feeds (5.25 ± 1.71) than Largespring Gambusia (2.5 ± 1.73) and had greater mean number of total feeds (2.78 ± 1.05) than Largespring Gambusia (0.94 ± 0.68). Our findings suggest that temperature-mediated species performance could be maintaining segregation between the two fish communities. This study benefits our understanding of distributional patterns and improves threat assessments of stenothermal aquatic organisms.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 48
Author(s):  
Carmen G. Sotelo ◽  
María Blanco ◽  
Patricia Ramos ◽  
José A. Vázquez ◽  
Ricardo I. Perez-Martin

Long life expectancy of populations in the developing world together with some cultural and social issues has driven the need to pay special attention to health and physical appearance. Cosmeceuticals are gaining interest in the cosmetic industry as their uses fulfills a double purpose: the requirements of a cosmetic (clean, perfume, protect, change the appearance of the external parts of the body or keeping them in good condition) with a particular bioactivity function. The cosmetics industry, producing both cosmetics and cosmeceuticals, is currently facing numerous challenges to satisfy different attitudes of consumers (vegetarianism, veganism, cultural or religious concerns, health or safety reasons, eco-friendly process, etc.). A currently growing trend in the market is the interest in products of low environmental impact. Marine origin ingredients are increasingly being incorporated into cosmeceutical preparations because they are able to address several consumer requirements and also due to the wide range of bioactivities they present (antioxidant, whitening, anti-aging, etc.). Many companies claim “Marine” as a distinctive marketing signal; however, only a few indicate whether they use sustainable ingredient sources. Sustainable marine ingredients might be obtained using wild marine biomass through a sustainable extractive fishing activity; by adopting valorization strategies including the use of fish discards and fish by-products; and by sustainably farming and culturing marine organisms.


Author(s):  
Shi ◽  
Fang ◽  
Qin ◽  
Chen ◽  
Wu ◽  
...  

Chlorpyrifos was one of the most widely used organophosphorus insecticides and the neurotoxicity and genotoxicity of chlorpyrifos to mammals, aquatic organisms and other non-target organisms have caused much public concern. Cupriavidus nantongensis X1T, a type of strain of the genus Cupriavidus, is capable of efficiently degrading 200 mg/L of chlorpyrifos within 48 h. This is ~100 fold faster than Enterobacter B-14, a well-studied chlorpyrifos-degrading bacterial strain. Strain X1T can tolerate high concentrations (500 mg/L) of chlorpyrifos over a wide range of temperatures (30–42 °C) and pH values (5–9). RT-qPCR analysis showed that the organophosphorus hydrolase (OpdB) in strain X1T was an inducible enzyme, and the crude enzyme isolated in vitro could still maintain 75% degradation activity. Strain X1T can simultaneously degrade chlorpyrifos and its main hydrolysate 3,5,6-trichloro-2-pyridinol. TCP could be further metabolized through stepwise oxidative dechlorination and further opening of the benzene ring to be completely degraded by the tricarboxylic acid cycle. The results provide a potential means for the remediation of chlorpyrifos- contaminated soil and water.


2020 ◽  
Author(s):  
Mohammad Ahmad Wahsha ◽  
Tariq Al-Najjar

<p>Heavy metals are considered to be among the most potent environmental contaminants, and their release into the environment is increasing rapidly since the last decades from various sources and activities and may enter into the environment by a wide range of pathways and processes. They can be translocated, disperse in the environment, and bio-concentrate in aquatic organisms, causing increase ecosystem degradation and leading to biodiversity loss. Furthermore, they may enter the food chain, creating health risks for both humans and animals. This study aimed to evaluate the ecotoxicological effects of anthropogenic pressure in semi-enclosed artificial lagoon ecosystems in the Gulf of Aqaba, Red Sea. Our findings with regard to heavy metal contamination showed that the area is contaminated by significant amounts of several potentially toxic heavy metals (such as Cd, Cr, Cu, and Fe). The anthropic intervention in the area impacted heavily the natural environment. We found that the biological test (lipid peroxidation) was a useful assay for assessing the overall health condition and response (stress level) towards natural and anthropogenic forces in the studied areas. The selected marine organisms (<em>Holothuria atra</em>, <em>Tripneustes gratilla</em>, <em>Ulva lactuca </em>and <em>Halophila stipulacea</em>) have the ability to accumulate several levels of heavy metals in their tissue with different trends of bioaccumulation. Therefore, they can be used as promising bioindicators for such research. The results obtained permit to assess the environmental effects of anthropogenic pressure and can be a useful basis for planning possible remediation projects.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Qi Jia ◽  
Nana Xu ◽  
Pengqian Mu ◽  
Bo Wang ◽  
Shuming Yang ◽  
...  

Tau-fluvalinate (TFLV) is one of the most potent chiral synthetic pyrethroids to control a wide range of pests in agricultural fields, especially in apiary. In this study, two stereoisomers of TFLV were fully separated by high-performance liquid chromatography (HPLC) with a semipreparative chiral column using cellulose-tris(3,5-dimethylphenylcarbamate) as chiral stationary phase andn-hexane and 2-propanol (96/4, v/v) as mobile phase at a flow rate of 2.5 mL min−1. The (+)-stereoisomer was first eluted by detecting with an optical rotation detector. After obtaining pure single stereoisomer of TFLV, acute toxicities of each isomer and TFLV standard to zebrafish were evaluated. The results showed that the (+)-stereoisomer exhibited 273.4 times higher toxicity than the (−)-stereoisomer and 6.7 times higher than TFLV standard, according to their LC50values at 96 h after exposure. This indicates that the toxicity of TFLV mainly originates from (+)-stereoisomer. These results are very helpful to prepare single stereoisomer of chiral pesticides and evaluate their different toxicological effects to aquatic organisms.


2012 ◽  
Vol 424-425 ◽  
pp. 1309-1312
Author(s):  
Jun Hao Niu ◽  
Zhi Jin Qiu ◽  
Cong Hu

A monitoring instrument of environment condition is described in this paper, which uses the LPC2368 as the controller. The acquisition of environmental condition is realized by using SHT11, which is a digital temperature and humidity sensor. A DS1302 is used as the real time reference clock device, and the time message is displayed on the LCD together with the environment temperature and humidity. As if the temperature or humidity is beyond the setting range, the alarm light and sound will be switched on to inform the manager. At the same time, the alarm message could be sent out to other monitor center by RS485 interface. Experimental results show that the temperature and humidity monitor features small, reliable performance, small error, and be suitable to a wide range.


Trudy VNIRO ◽  
2020 ◽  
Vol 181 ◽  
pp. 16-32
Author(s):  
A.A. Bajtalyuk ◽  
◽  
A.V. Adrianov ◽  
V.N. Akulin ◽  
I.V. Dyujzen ◽  
...  

In 2018, in the Scientific and Educational Complex “Primorsky Oceanarium” of the National Scientific Center for Marine Biology (NSCMB) FEB RAS, a Collective Use Center (CUC) was created with scientific equipment, coastal and near-shore infrastructure, unique facilities and biological materials. In its function, this Center is a unit for cooperation between fishery science and academic science in marine biotechnology (MBC). It was organized using principles of shared access of participants to marine areas, coastal research stations, biological and instrumental basis of Marine Mammals Research facility in “Primorsky Oceanarium” MBC structure in the form of CUC can be used in addressing a wide range of tasks in implementing knowledge intensive marine biotechnologies, upgrading bionic methods in the study of aquatic organisms, carrying out field studies and tests on hydroacoustic, electrical, fishing gear and other manipulators for moving behavior of aquatic organisms and their adaptation to fishing activity. The first MBC joint research results are shown. Those studies include research on acoustic and kinematic activity and characteristics of signals of marine mammals and fish, hydroacoustic emitters testing for controlling fish behavior, experimental studies on reflective properties of aquatic irganisms, and influence of attracting and repelling hydroacoustic emitters on fish behavior in cages using modern instrumental control and observation tools.


2018 ◽  
Vol 49 (1) ◽  
pp. 26-31
Author(s):  
A. Cidlinová ◽  
Z. Wittlingerová ◽  
M. Zimová ◽  
T. Chrobáková ◽  
A. Petruželková

Abstract Wastewater from medical facilities contains a wide range of chemicals (in particular pharmaceuticals, disinfectants, heavy metals, contrast media, and radionuclides) and pathogens, therefore it constitutes a risk to the environment and human health. Many micropollutants are not efficiently eliminated during wastewater treatment and contaminate both surface water and groundwater. As we lack information about the long-term effects of low concentrations of micropollutants in the aquatic environment, it is not possible to rule out their adverse effects on aquatic organisms and human health. It is, therefore, necessary to focus on the evaluation of chronic toxicity in particular when assessing the environmental and health risks and to develop standards for the regulation of hazardous substances in wastewater from medical facilities on the basis of collected data. Wastewater from medical facilities is a complex mixture of many compounds that may have synergetic, antagonistic or additive effects on organisms. To evaluate the influence of a wide range of pollutants contained in the effluents from medical facilities on aquatic ecosystems, it is necessary to determine their ecotoxicity.


2019 ◽  
Author(s):  
Letizia Modeo ◽  
Alessandra Salvetti ◽  
Leonardo Rossi ◽  
Michele Castelli ◽  
Franziska Szokoli ◽  
...  

AbstractMost of the microorganisms belonging to genera responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts, in particular, numerous new bacterial species related to the genusRickettsia(Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protist as vectors. In the present study, we characterized a novel strain of theRickettsia-Like Organism (RLO) endosymbiont “Candidatus(Ca.) Trichorickettsia mobilis” in the macronucleus of the ciliateParamecium multimicronucleatumthrough FluorescenceIn SituHybridization (FISH) and molecular analyses. Ultrastructural investigations on the presence of flagella confirmed previous studies on the same bacterial species. The potential trans-infection perosof this bacterium to planarians (Dugesia japonica), a widely used model system able to eliminate a wide range of bacteria pathogenic to humans and other Metazoa, was further verified. Ciliate mass cultures were set up, and trans-infection experiments were performed by adding homogenized paramecia to food of antibiotic-treated planarians, performed. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transferred from ciliates to metazoans, being detected up to day 7 in treated planarian enterocytes inside and, possibly, outside phagosomes.


2021 ◽  
Vol 3 (1) ◽  
pp. 54-60
Author(s):  
Didem Gökçe

The quick improvement of nanotechnology permits a wide range of utilization of engineered nanoparticles, such as personal care products, medicals, optics, electronics, and automobiles. The nanoparticles manufactured from Ag, Au carbon-nanotube, ZnO, SiO2, TiO2, Cu, Ni, and magnetic ferrites are among the generally utilized in products. The nanoparticles are produced and utilized in large quantities and release into marine and freshwater ecosystems during production, use, discharge, treatment, and deposition. Those particles with a mean size of 1 nm - 100 nm are of potential environmental risks because of their particular qualifications and high reactivity although their great economical values. Based on the studies, the size, shape, and surface physical and chemical characteristics of the nanoparticles show the level of aggregation, solubility, structural and chemical composition, the importance of the use of nanoparticles, and their toxicity with biological systems. Nanoparticles can potentially cause adverse impacts on tissue, cellular, genetic materials, and protein- enzyme levels due to their unique physical and chemical qualifications. In this study, the effects of nanoparticles on aquatic organisms and aquatic ecosystems were evaluated.


Sign in / Sign up

Export Citation Format

Share Document