scholarly journals Isolation, diversity, and antimicrobial activity of fungal endophytes from Rohdea chinensis (Baker) N.Tanaka (synonym Tupistra chinensis Baker) of Qinling Mountains, China

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9342
Author(s):  
Chao An ◽  
Saijian Ma ◽  
Xinwei Shi ◽  
Wenjiao Xue ◽  
Chen Liu ◽  
...  

Endophytic fungi have been emerged as fruitful resources for producing structurally fascinating and biologically active secondary metabolites. However, endophytic fungi from medicinal plants of Qinling Mountains–the most important natural climatic boundary between the subtropical and warm temperate zones of China with an astonishingly high level of biodiversity–have rarely been explored as potential sources of novel fungal species and active secondary metabolites. In this study, a total of 371 fungal colonies were successfully isolated from 510 tissue segments of the medicinal Tupistra chinensis Baker collected from Qinling Mountains, China. Roots of T. chinensis Baker are used as a folk medicine to ameliorate pharyngitis and treat rheumatic diseases. A total of 100 representative morphotype strains were identified according to ITS rDNA sequence analyses and were grouped into three phyla (Ascomycota, Basidiomycota, Mucoromycota), seven classes (Dothideomycetes, Sordariomycetes, Eurotiomycetes, Microbotryomycetes, Agaricomycetes, Leotiomycetes, Mortierellomycetes), and at least 35 genera. The genera of Collectotrichum (IF, 29.92%), Fusarium (IF, 8.36%), Aspergillus (IF, 8.09%), and Dactylonectria (IF, 5.39%) were most frequently isolated from the tissues of T. chinensis Baker. The Species Richness Index (S, 65) and the Shannon-Wiener Index (H′, 3.7914) indicated that T. chinensis Baker harbored abundant fungal resources. Moreover, five isolates were potential new taxa because of low similarity of ITS sequences ranged from 95.09%∼96.61%. Fifteen out of 100 endophytic fungal ethyl acetate extracts exhibited inhibitory activities against at least one pathogenic bacterium or fungus. Two important lead compounds produced by two stains (F8047 and F8075) with high antimicrobial activities were identified using high performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC–QTOF MS) analyses. In addition, it was noteworthy that the strain F8001, which may be a potential new species, showed antimicrobial activity and should be investigated further. Overall, these results indicated that the endophytic fungi from T. chinensis Baker could be exploited as a novel source of bioactive compounds.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6427 ◽  
Author(s):  
Chutima Tanapichatsakul ◽  
Sarunpron Khruengsai ◽  
Sakon Monggoot ◽  
Patcharee Pripdeevech

Endophytic fungi, which colonize within a host plant without causing any apparent diseases, have been considered as an important source of bioactive secondary metabolites containing antimicrobial and antioxidant activities. The aim of this research was to isolate the endophytic fungi ofCinnamomum loureiroiand then to screen their antimicrobial and antioxidant activities. A total of 11 fungal endophytes were isolated from healthy leaves ofCinnamomum loureiroibelonging to six genera:Botryosphaeria,Colletotrichum,Diaporthe,Fusarium,Neopestalotiopsis, andPestalotiopsis. All isolated strains were cultured and further extracted with ethyl acetate solvent. Antimicrobial activity of all crude endophytic fungal extracts was analyzed using disc diffusion assay against six bacterial and two fungal pathogens. Crude extracts of strains MFLUCC15-1130 and MFLUCC15-1131 showed broad-spectrum antimicrobial activity against all tested pathogens. Activity againstBacillus cereusandStaphylococcus epidermidiswas notable, showing the lowest minimum inhibitory concentration at 3.91 μg/mL. Antioxidant activity of all crude endophytic fungal extracts was also evaluated based on 2,2-diphenyl-1-picrylhydrazyl assay. Significant antioxidant activity was detected in the crude extracts of fungus MFLUCC15-1130 and MFLUCC15-1131 with IC50of 22.92 ± 0.67 and 37.61 ± 0.49 μg/mL, respectively. Using molecular identification, MFLUCC15-1130 and MFLUCC15-1131 were identified asNeopestalotiopsissp. andDiaporthesp., respectively. The major chemical constituents produced by both crude extracts were identified by gas chromatography-mass spectrometry. Eugenol, myristaldehyde, lauric acid, and caprylic acid were the primary antimicrobial and antioxidant compounds in both crude extracts. This is the first report of eugenol being a biologically active compound ofNeopestalotiopsissp. andDiaporthesp. fungal endophytes. Eugenol has been reported as antimicrobial and antioxidant agents with agronomic applications. Thus the two newly-isolated endophytes may be used for eugenol production, which in turn can be used in a variety of applications.


2014 ◽  
Vol 60 (12) ◽  
pp. 847-856 ◽  
Author(s):  
Mariana L.A. Vieira ◽  
Susana Johann ◽  
Frederic M. Hughes ◽  
Carlos A. Rosa ◽  
Luiz H. Rosa

The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher α-biodiversity were also those that contributed more to the regional (γ) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities.


2021 ◽  
Author(s):  
Mohammad Magdy El-Metwally ◽  
Atia Mohamed Eisa ◽  
Amal AI Mekawey ◽  
Samy F. Mahmoud ◽  
Yasser El Halmouch

Abstract One of hidden mine of antibiotics is endophytic fungi especially that inhibited medicinal plants. In this regard, leaves, stems, fruits and bulbs of some commonly medicinal plants growing in Northwestern coast of Egypt were subjected for isolation of endophytic fungi with screening study of its antimicrobial activity. Practically, more than one hundred (101) endophytic fungal species isolated from Scorpiurus muricatus, Mellilotus indicus, Lotus polyphyllos, Ononis vaginalis, Nicotiana glauca, Lycium europaeum, Asphodelus aestivus, Echium angustifolium,Fagonia cretica, Pancratium maritimum,and Carduus getulus were tested in vitro for their antimicrobial activities against E. coli, Pseudomonas argenosa, Staphylococcus aureus, Bacillus subtilus, Candida albicanus, Candida glabrata, Penicillium expansum, Aspergillus flavus. The values of applied diversity indices revealed significant differences in presence, absence and abundance among endophytic fungal isolates. To the best of our knowledge, the present study is the first to report of Alternaria pluriseptata as endophytic species with most dominant and most active in its anitimicrobial activity among the isolated species. Seven distinctive groups were revealed from the two-way cluster analysis showing the intensity of antimicrobial activity against tested pathogens: Twenty-five percent of the isolates (26 strains assembled together in group V) exhibited no antimicrobial activity against all tested pathogens while six percent (6 isolates) assembled in group VII revealed high antimicrobial activity against five pathogens.


2017 ◽  
Vol 7 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Mark O. Akpotu ◽  
Peter M. Eze ◽  
Chika C. Abba ◽  
Blessing O. Umeokoli ◽  
Charles U. Nwachukwu ◽  
...  

Introduction: Recently, several endophytes have been shown to possess the potentials to synthesize novel bioactive compounds that have found use for drug discovery. We isolated endophytic fungi associated with Catharanthus roseus collected from the river banks of Amassoma in Southern Nigeria, and identified some of their bioactive secondary metabolites. Methods: The fungi were subjected to solid-state fermentation on rice medium and the metabolites were extracted using ethyl acetate. The fungal crude extracts were screened for antimicrobial activity and were also subjected to high-performance liquid chromatography-diode-array detection (HPLC-DAD) analysis for the identification of the bioactive compounds. Results: The fungal extracts showed both antibacterial and antifungal activities with minimum inhibitory concentrations ranging from 0.0625 to 1 mg/mL. The HPLC-DAD analysis of the extracts suggested the presence of citreoisocoumarin, citreoisocoumarinol, questinol, hydroxyemodin, acropyrone, methyl 2-(4-hydroxyphenyl) acetate, nigricinol, and cladosporin. Conclusion: The results of this study suggest that endophytic fungi associated with C. roseus could be a promising source of novel bioactive compounds with pharmaceutical and industrial importance.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
Fei Wu ◽  
Dingchao Yang ◽  
Linping Zhang ◽  
Yanliu Chen ◽  
Xiaokang Hu ◽  
...  

Endophytes are important components of forest ecosystems, and have potential use in the development of medical drugs and the conservation of wild medicinal plants. This study aimed to examine the diversity and antimicrobial activities of endophytic fungi from a medicinal plant, Litsea cubeba (Lour.) Pers. The results showed that a total of 970 isolates were obtained from root, stem, leaf, and fruit segments of L. cubeba. All the fungal endophytes belonged to the phylum Ascomycota and could be classified into three taxonomic classes, nine orders, twelve families, and seventeen genera. SF15 (Colletotrichum boninense) was the dominant species in L. cubeba. Leaves harbored a greater number of fungal endophytes but lower diversity, while roots harbored the maximum species diversity of endophytic fungi. For the antimicrobial activities, seventeen isolates could inhibit the growth of plant pathogenic fungi, while the extracts of six endophytes showed antimicrobial activity to all the tested pathogenic fungi. Among these endophytes, SF22 (Chaetomium globosum) and SF14 (Penicillium minioluteum) were particularly effective in inhibiting seven plant pathogenic fungi growths and could be further explored for their potential use in biotechnology, medicine, and agriculture.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2020 ◽  
Vol 75 (3-4) ◽  
pp. 75-86
Author(s):  
Taiji Nomura ◽  
Yasuo Kato

AbstractTuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4′-hydroxy-2′-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name ‘tuliposide G’ (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.


2015 ◽  
Vol 10 (3) ◽  
pp. 529 ◽  
Author(s):  
Huawei Zhang ◽  
Chuanfeng Ruan ◽  
Xuelian Bai

<p>Ten fungal strains isolated from <em>Edgeworthia chrysantha</em>, one of traditional medicinal plants in China, were evaluated their antimicrobial activities against three human pathogens, <em>Escherichia coli, Staphyloccocus aureus and Candida albicans</em>, and two phytopathogens, <em>Rhizoctonia cerealis</em> and <em>Colletotrichum gloeosporioides</em>. The results indicated that most ethyl acetate extracts of fermentation broth of these fungal endophytes had stronger antimicrobial activities than their fermentation broth. Among these endophytic strains, both fermentation broth and the ethyl acetate extract of strain D showed the strongest inhibitory effects on all pathogens. Strains 5-19 and BZ also exhibited potent antibacterial activities. However, other strains had weak or no antimicrobial effect. This was the first report on the isolation and antimicrobial effects of endophytic fungi from <em>E. chrysantha</em>.   </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document