scholarly journals KRETERIA DESAIN FOTOBIOREAKTOR SISTEM AIRLIFT REACTOR

2016 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Arif Dwi Santoso ◽  
Abdil H.S ◽  
Diyono .

Global warming has become an increasingly important issue around the world today due to the rise of anthropogenic greenhouse gases emission, which gives several negative impacts on human life. There are some techniques have been studied and assessed i.e. physical mechanism by injected CO2 to the geological formations, chemical mechanism with artificial tree technology and biological mechanism by increasing the primary production through iron enrichment in high nutrient-low chlorophyll (HNLC) waters as well as mixing of water column below the sea surface. Those technologies, which are well known as Carbon Capture Storage ‘(CCS) technology, are expected to be applied to reduce the oncentration of anthropogenic CO2 in the atmosphere and to minimize the global warming. The Center of Environmental Technology, Agency for the Assessment and Application of Technology (BPPT) will carry out a research concerning CO2 reduction by a phytoplankton culture in a photobioreactor in three years. The main objective of this research is to assess the CO2 uptake capability of tropical phytoplankton. In this paper, we would showed the creteria and design to assembly a photobioreactor esspesially a air lift photobioreactor. To improve performance photobioreaktor, the materials included design criteria and the dynamics of fluids in fotobioreaktor have to considered propoerly. Other the hand, the selection of the most productive species and selection of appropriate media and economically also important to be done. Keywords: global warming, creteria and design, greenhouse gas, air lift photobioreactor

2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 482
Author(s):  
Hilmar Guzmán ◽  
Federica Zammillo ◽  
Daniela Roldán ◽  
Camilla Galletti ◽  
Nunzio Russo ◽  
...  

Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2084
Author(s):  
Raman Kumar ◽  
Rohit Dubey ◽  
Sehijpal Singh ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
...  

Total knee replacement (TKR) is a remarkable achievement in biomedical science that enhances human life. However, human beings still suffer from knee-joint-related problems such as aseptic loosening caused by excessive wear between articular surfaces, stress-shielding of the bone by prosthesis, and soft tissue development in the interface of bone and implant due to inappropriate selection of TKR material. The choice of most suitable materials for the femoral component of TKR is a critical decision; therefore, in this research paper, a hybrid multiple-criteria decision-making (MCDM) tactic is applied using the degree of membership (DoM) technique with a varied system, using the weighted sum method (WSM), the weighted product method (WPM), the weighted aggregated sum product assessment method (WASPAS), an evaluation based on distance from average solution (EDAS), and a technique for order of preference by similarity to ideal solution (TOPSIS). The weights of importance are assigned to different criteria by the equal weights method (EWM). Furthermore, sensitivity analysis is conducted to check the solidity of the projected tactic. The weights of importance are varied using the entropy weights technique (EWT) and the standard deviation method (SDM). The projected hybrid MCDM methodology is simple, reliable and valuable for a conflicting decision-making environment.


Author(s):  
Dui Ma ◽  
Ting Jin ◽  
Keyu Xie ◽  
Haitao Huang

Converting CO2 into value-added fuels or chemical feedstocks through electrochemical reduction is one of the several promising avenues to reduce atmospheric carbon dioxide levels and alleviate global warming. This approach...


Author(s):  
Annu Reetha Thomas

Discharging of wastes and toxic pollutants produced by the industrial activities into the natural environment which consist of air, water and land implies the term Industrial Pollution. It has serious consequences on human life and its health along with several ways of negative impacts on the environment and nature. As far as our nation is concerned most of the major cities are filled with these large-scale industries which place a crucial role financial development of a country. Strictly hindering the development of industries cannot be done as it is vital for the Socio-Economic progress of a country. Yet it is our duty to protect our natural environment by limiting the pollution due to industries. This Study consist of the issues occurred in Eloor- Kadungalloor region as result of the industrial pollution followed by policies for a development plan to enhance the natural and environmental conditions with a planning approach at micro study level. As far as the Kerala context is considered, the major spot which is mostly affected by the industrial pollution is the ‘Edayar Industrial belt’ which is the largest industrial belt in Kerala. This became one of most noted spot because of the continuous dumping of dangerous chemical pollutants from adjacent industries (pesticide and fertilizer manufacturing). It has also resulted in health issues for the inhabitants of the site. Though many complaints have been filed against the companies, there has no proper laws or schemes for taking measures for reduction of pollution have come up so far. Hence this paper deals with the application of technical solutions and strategies for an Environment Improvement plan development for an industrial as well as studying on the issues of sire and its inhabitants.


2018 ◽  
Vol 28 ◽  
pp. 01021
Author(s):  
Radosław Lajnert ◽  
Martyna Nowak ◽  
Jolanta Telenga-Kopyczyńska

The scope of this publication is a presentation of environmental issues and process risks connected with operation an installation for carbon capture from waste gas. General technological assumptions, typical for demonstration plant for carbon capture from waste gas (DCCP) with application of two different solutions – 30% water solution of monoethanoloamine (MEA) and water solution with 30% AMP (2-amino-2-methyl-1-propanol) and 10% piperazine have been described. The concept of DCCP installation was made for Łaziska Power Plant in Łaziska Górne owned by TAURON Wytwarzanie S.A. Main hazardous substances, typical for such installation, which can be dangerous for human life and health or for the environment have been presented. Pollution emission to the air, noise emission, waste water and solid waste management have been described. The environmental impact of the released substances has been stated. Reference to emission standards specified in regulations for considered substances has been done. Principles of risk analysis have been presented and main hazards in carbon dioxide absorption node and regeneration node have been evaluated.


2021 ◽  
Vol 46 (2) ◽  
pp. 11-25
Author(s):  
Jolanta Brzykcy

The article is an analysis of the poetry of Gisella Lachman (1895–1969), poet of the “first wave” of Russian emigration, from the perspective of the poetics of space. The poet expressed her emigration experience (multiple changes of residence: Russia, Germany, Switzerland, USA) in her poems in spatial relations. They appear on different levels of the works’ morphology: in the construction of the lyrical “I”, in the organisation of the presented world, in the repertoire of motifs and the selection of poetic lexis and genre forms. Space plays a literal role in Lachman’s poetry; it is a representation of extra-literary reality, seen subjectively. It is also subject to metaphorisation, becoming a tool for expressing philosophical content. The poet creates not only a spatial model of the world, but also a spatial model of human life, which she perceives as a transit on the road to eternity.


2021 ◽  
Author(s):  
◽  
Lars Holmberg

Machine Learning (ML) and Artificial Intelligence (AI) impact many aspects of human life, from recommending a significant other to assist the search for extraterrestrial life. The area develops rapidly and exiting unexplored design spaces are constantly laid bare. The focus in this work is one of these areas; ML systems where decisions concerning ML model training, usage and selection of target domain lay in the hands of domain experts. This work is then on ML systems that function as a tool that augments and/or enhance human capabilities. The approach presented is denoted Human In Command ML (HIC-ML) systems. To enquire into this research domain design experiments of varying fidelity were used. Two of these experiments focus on augmenting human capabilities and targets the domains commuting and sorting batteries. One experiment focuses on enhancing human capabilities by identifying similar hand-painted plates. The experiments are used as illustrative examples to explore settings where domain experts potentially can: independently train an ML model and in an iterative fashion, interact with it and interpret and understand its decisions. HIC-ML should be seen as a governance principle that focuses on adding value and meaning to users. In this work, concrete application areas are presented and discussed. To open up for designing ML-based products for the area an abstract model for HIC-ML is constructed and design guidelines are proposed. In addition, terminology and abstractions useful when designing for explicability are presented by imposing structure and rigidity derived from scientific explanations. Together, this opens up for a contextual shift in ML and makes new application areas probable, areas that naturally couples the usage of AI technology to human virtues and potentially, as a consequence, can result in a democratisation of the usage and knowledge concerning this powerful technology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kuo Wang ◽  
Han Zhang ◽  
Gao-Feng Fan ◽  
Zheng-Quan Li ◽  
Zhen-Yan Yu ◽  
...  

Since preindustrial times, atmospheric CO2 content increased continuously, leading to global warming through the greenhouse effect. Oceanic carbon sequestration mitigates global warming; on the other hand, oceanic CO2 uptake would reduce seawater pH, which is termed ocean acidification. We perform Earth system model simulations to assess oceanic CO2 uptake, surface temperature, and acidification for Zhejiang offshore, one of the most vulnerable areas to marine disasters. In the last 40 years, atmospheric CO2 concentration increased by 71 ppm, and sea surface temperature (SST) in Zhejiang offshore increased at a rate of 0.16°C/10a. Cumulative oceanic CO2 uptake in Zhejiang offshore is 0.3 Pg C, resulting in an increase of 20% in sea surface hydrogen ion concentration, and the acidification rate becomes faster in the last decade. During 2020–2040, under four RCP scenarios, SST in Zhejiang offshore increases by 0.3–0.5°C, whereas cumulative ocean carbon sequestration is 0.150–0.165 Pg C. Relative to RCP2.6, the decrease of surface pH in Zhejiang offshore is doubled under RCP8.5. Furthermore, simulated results show that the relationship between CO2 scenario and oceanic carbon cycle is nonlinear, which hints that deeper reduction of anthropogenic CO2 emission may be needed if we aim to mitigate ocean acidification in Zhejiang offshore under a higher CO2 concentration scenario. Our study quantifies the variation characteristics of oceanic climate and carbon cycle fields in Zhejiang offshore, and provides new insight into the responses of oceanic carbon cycle and the climate system to oceanic carbon sequestration.


2021 ◽  
Vol 308 ◽  
pp. 01024
Author(s):  
Hengyang Fei ◽  
Chaoyue Zhang

Global warming (GW) is a severe problem that needs to be resolved, but how can scientists contribute to this issue? Carbon capture and storage (CCS) technology is a way of reducing the enhanced greenhouse effect. Here, we introduce two methods of CCS technology, including corresponding scientific proofs for each one being viable, the merits and demerits of each measure. Moreover, there are oppositions against the implementation of CCS projects. We also summarize some perspectives and possible solutions for societal opposition against CCS projects. This review will enhance the understanding of the strategies of CCS and the solutions of GW.


Sign in / Sign up

Export Citation Format

Share Document