scholarly journals Optimization of Value Added Products from under-Utilized Tamarind Kernel Powder

Author(s):  
B. Farhat Sultana ◽  
R. Vijayalakshmi ◽  
P. S. Geetha ◽  
M. L. Mini

Aim:  To develop value added products from Tamarind kernel powder (TKP). Place and Duration of Study: Department of Food Science and Nutrition, Community Science College and Research Institute, Madurai. Methodology: The nutritional value of TKP and the potential of TKP as a food additive were investigated. The TKP and commercial additives were experimented under the refrigerated and room temperature for their viscosity properties in order to identify the potential of TKP as a thickening agent. Standardization for the level of incorporation was done in Mango smoothie using TKP as thickening agent in the rate of T1-0.25%, T2-0.50%, T3-0.75%, T4-1.00%. Results: The performance of TKP as thickening agent was not considerably higher. Its performance was not significantly higher on comparison with commercial thickening agents. Xanthan gum ranked high among all the additives in terms of thickening property. Among the different incorporations of tamarind kernel powder T4 performed best in terms of viscosity. Conclusions: The results indicate that TKP have poor thickening property. To improve this property the TKP can be subjected to structural modification and isolation of polysaccharide which would yield better results. TKP as a food additive replacing conventional food additives will be a great boom to the food industry. There will be increase in anti-oxidant and phytochemical property of the resultant product.

2015 ◽  
Vol 18 (3) ◽  
pp. 192-198 ◽  
Author(s):  
Liliana SERNA-COCK ◽  
Diana Patricia VARGAS-MUÑOZ ◽  
Carlos Andrés RENGIFO-GUERRERO

Summary The chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal) was determined. In artisanal fruit processing, 26.3% of peel and 9.7% of seeds were obtained. The seeds showed a high potential for the development of value-added products because of their dry matter contents (23.46%) as follows: carbohydrate (69.37% dry basis (d.b.)), nitrogen (3.18 g/100 g of seed d.b.), K (0.023 g/100 g of seed d.b.), Fe (0.0185 g/100 g of seed d.b.) and dietary fiber (21.27 g/100 g of seed d.b.). The carbohydrate, dietary fibre and mineral contents of the pulp, peel and seeds also highlighted the agroindustrial potential of the fruit in that these constituents could be used to develop functional foods, food additives, preparations for functional diets and dietary supplements.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2652
Author(s):  
Irene Dini

The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.


Author(s):  
Ji Hye Kim ◽  
Jae-Eun Lee ◽  
Kyoung Heon Kim ◽  
Nam Joo Kang

Marine algae have been considered as abundant source of bioactive compounds with cosmeceutical potential. Recently, a great deal of interest has focused on the health-promoting effects of marine bioactive compounds. Carbohydrate is a major and abundant constitute of marine algae that have been utilized in cosmetic formulations, such as moisturizing and thickening agents. In addition, marine carbohydrates have been suggested as promising bioactive biomaterials for various skin beneficial properties, such as anti-oxidant, anti-melanogenic and anti-skin aging. Therefore, marine algae carbohydrates have potential of skin health benefits for value-added cosmeceutical application. The present review focused on the various biological capacities and potential skin health benefits of bioactive marine carbohydrates.


Author(s):  
Damini Soni ◽  
Gargi Saxena

The global increasing population demands for more food production and food processing which consequently results in more food waste generation. The total waste produced in different stages of processing of food generally comprises of peels, pomace, seed, pulp, unused flesh and damaged food which is biodegradable in nature. These by-products are a good source of bioactive compounds like polyphenols, antioxidants and phytochemicals. They are the storehouse of complex carbohydrates, lipids, proteins and nutraceuticals depending on the nature of product produced for example poultry and meat industries are rich the source of proteins and lipids, fruits and vegetable processing industries are rich in bioactive compounds and cereal industries are good source of phenolic compounds and dietary fiber. The food waste or by-products are important source of colorants, fiber, flavoring and antimicrobials which are used in food industry as a source of food additives. The phenolic compounds present in by products of different foods exhibit anti-oxidant, anti-microbial, anti-inflammatory, immune-modulatory activity and play a major role in reducing the risk of cardiovascular problems, osteoporosis, thrombosis, platelets aggregation and diabetes in humans. By products from different industries can be used to develop value added products in India where poverty and malnutrition are the major issues. Developing effective policies for the utilization of food waste along the value chain can help reduce food waste problem and contribute towards food security and sustainability.Keywords: By products, Bioactive compounds, Food industry, Food waste.


2018 ◽  
Vol 54 (2A) ◽  
pp. 222
Author(s):  
Ngo Duy Sa

The fractionation of sugarcane bagasse using formic acid allowed removing lignin and hemicellulose, obtaining a material containing up to 90 % cellulose. The material can be easily hydrolyzed into glucose to serve as materials to produce high value added products such as biofuel, chemicals, pharmaceuticals, food additives, and the likes. The hydrolysate of fractionated bagasse was easily fermented with a (ethanol) fermentation yield attained 91.08 ± 2.02 %, showing no significant inhibition to the yeast in the hydrolysate. In this study, a process of simultaneous hydrolysis and fermentation (SSF) was performed to convert fractionated sugarcane bagasse at 20 % consistency to ethanol. The process with 6h pre-hydrolysis at 50 0C then SSF at 37 0C could attain a high ethanol concentration of 82.46 ± 3.42 g/L in the fermentation with the ethanol recovery yield of 81.66±1.88%; which was15.37 ± 1.06 % higher than that of the separate hydrolysis and fermentation (SHF) process (70.78 ± 0.25 %). In addition, in the SSF, the process time was shorten to 4 days instead of 7 days in the SHF.


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


2020 ◽  
Vol 10 ◽  
Author(s):  
Sonika Arti ◽  
Neha Aggarwal

Aim: The micellization behavior of cationic surfactants have been studied in the presence of food additives. Objectives: Micellization behaviour of cationic surfactants, cetyltrimethylammonium bromide (CTAB) and tetradecyltrimethylammonium bromide (TTAB) has been studied in water and in various concentrations of salts (food additives) L-glutamic acid, sodium propionate, sodium citrate tribasic dihydrate and disodium tartrate dihydrate at (298.15, 308.15 and 318.15) K. Methods: Two methods used in the present study are specific conductance measurements and spectroscopy (NMR) studies. Results: From the specific conductance(κ), various parameters such as critical micelle concentration (CMC), degree of ionization of micelle (α), standard Gibbs free energy (ΔGom), enthalpy (ΔHom), and entropy (ΔSom) of micellization have also been calculated. Thermodynamic parameters related to the micellization process were also analyzed through NMR studies. Conclusion: The CMC values are influenced by the presence of food additive. The magnitude of CMC values increase with increase in concentration of food additive. In all the cases, enthalpy of micellization, ∆Hom values are found to be negative whereas entropy of micellization, ∆S om values are positive which indicate that hydrophobic interactions play a major role in the micellization process. Also, NMR studies reveal that tartrate and citrate are more hydrated than glutamic acid and propionate, resulting in more downfield shift.


2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document