scholarly journals Mechanisms Causing Aging, Current Knowledge and the Way Forward

Author(s):  
Gabriel Pisani ◽  
Byron Baron

The rapid advancement in research technologies and bioinformatics over the past few decades has enabled researchers to shed light on the underlying mechanisms behind aging. Whilst the progress in understanding the biochemical processes involved is impressive, a lot more still needs to be uncovered before any potential effective anti-aging treatment can be produced. Unravelling the various root causes of aging is still the most important obstacle to overcome. The data available highlights that the most likely drivers of aging are the proteosome, the ribosome and telomeres. This review focuses largely on these factors and how they contribute to initiating aging and their targeting in potential therapy against the multitude of age-associated disorders. The investigation thus far of these causative factors will be presented. Understanding these root causes and how they cause aging is fundamental to present a way forward, such that the biochemical basis of aging can be discovered, in order to usher in a new wave of therapeutics against complex diseases.

Author(s):  
Nitin Saksena ◽  
Srinivasa Reddy Bonam ◽  
Monica Miranda-Saksena

As the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is a new virus, the current knowledge on the immunopathogenesis of this newly emerged SARS-CoV-2 is beginning to unravel with intensive ongoing global research efforts. Although a plethora of new studies have been published in a short space of time describing how the virus causes disease and incurs insults on the host immune system and the underlying immunopathogenic mechanisms remain to be elucidated. Thus, the discussion in this review is based on the most current knowledge on the immunopathogenesis of SARS-CoV-2 that has emerged in the past 12 months. The main objective is to shed light on the most current concepts in immunopathological aspects of the lung, bloodstream, and brain caused by the SARS-CoV-2, which has led to the current pandemic resulting in > 100 million infections and > 2 million deaths, and ongoing.


2017 ◽  
Vol 131 (14) ◽  
pp. 1649-1667 ◽  
Author(s):  
Anna Witasp ◽  
Amaryllis H. Van Craenenbroeck ◽  
Paul G. Shiels ◽  
Tomas J. Ekström ◽  
Peter Stenvinkel ◽  
...  

Chronic kidney disease (CKD), affecting 10–12% of the world’s adult population, is associated with a considerably elevated risk of serious comorbidities, in particular, premature vascular disease and death. Although a wide spectrum of causative factors has been identified and/or suggested, there is still a large gap of knowledge regarding the underlying mechanisms and the complexity of the CKD phenotype. Epigenetic factors, which calibrate the genetic code, are emerging as important players in the CKD-associated pathophysiology. In this article, we review some of the current knowledge on epigenetic modifications and aspects on their role in the perturbed uraemic milieu, as well as the prospect of applying epigenotype-based diagnostics and preventive and therapeutic tools of clinical relevance to CKD patients. The practical realization of such a paradigm will require that researchers apply a holistic approach, including the full spectrum of the epigenetic landscape as well as the variability between and within tissues in the uraemic milieu.


2019 ◽  
Vol 21 (4) ◽  
pp. 389-396 ◽  

Psychosocial stress—especially when chronic, excessive, or occurring early in life—has been associated with accelerated aging and increased disease risk. With rapid aging of the world population, the need to elucidate the underlying mechanisms is pressing, now more so than ever. Among molecular mechanisms linking stress and aging, the present article reviews evidence on the role of epigenetics, biochemical processes that can be set into motion by stressors and in turn influence genomic function and complex phenotypes, including aging-related outcomes. The article further provides a conceptual mechanistic framework on how stress may drive epigenetic changes at susceptible genomic sites, thereby exerting systems level effects on the aging epigenome while also regulating the expression of molecules implicated in aging-related processes. This emerging evidence, together with work examining related biological processes, begins to shed light on the epigenetic and, more broadly, molecular underpinnings of the long-hypothesized connection between stress and aging.


2007 ◽  
Vol 363 (1497) ◽  
pp. 1647-1661 ◽  
Author(s):  
Ton. G.G Groothuis ◽  
Hubert Schwabl

Over the past decade, birds have proven to be excellent models to study hormone-mediated maternal effects in an evolutionary framework. Almost all these studies focus on the function of maternal steroid hormones for offspring development, but lack of knowledge about the underlying mechanisms hampers further progress. We discuss several hypotheses concerning these mechanisms, point out their relevance for ecological and evolutionary interpretations, and review the relevant data. We first examine whether maternal hormones can accumulate in the egg independently of changes in hormone concentrations in the maternal circulation. This is important for Darwinian selection and female physiological trade-offs, and possible mechanisms for hormone accumulation in the egg, which may differ among hormones, are reviewed. Although independent regulation of plasma and yolk concentrations of hormones is conceivable, the data are as yet inconclusive for ovarian hormones. Next, we discuss embryonic utilization of maternal steroids, since enzyme and receptor systems in the embryo may have coevolved with maternal effect mechanisms in the mother. We consider dose–response relationships and action pathways of androgens and argue that these considerations may help to explain the apparent lack of interference of maternal steroids with sexual differentiation. Finally, we discuss mechanisms underlying the pleiotropic actions of maternal steroids, since linked effects may influence the coevolution of parent and offspring traits, owing to their role in the mediation of physiological trade-offs. Possible mechanisms here are interactions with other hormonal systems in the embryo. We urge endocrinologists to embark on suggested mechanistic studies and behavioural ecologists to adjust their interpretations to accommodate the current knowledge of mechanisms.


Author(s):  
Hongjiao Yu ◽  
Chaonan Sun ◽  
Qing Gong ◽  
Du Feng

Mitochondria-associated ER membranes (MAMs) represent a crucial intracellular signaling hub, that regulates various cellular events including Ca2+ homeostasis, lipid metabolism, mitochondrial function, and cellular survival and death. All of these MAM-mediated cellular events contribute to carcinogenesis. Indeed, altered functions of MAMs in several types of cancers have been documented, in particular for breast cancer. Over the past years, altered expression of many MAM-resident proteins have been reported in breast cancer. These MAM-resident proteins play an important role in regulation of breast cancer initiation and progression. In the current review, we discuss our current knowledge about the functions of MAMs, and address the underlying mechanisms through which MAM-resident proteins regulate breast cancer. A fuller understanding of the pathways through which MAMs regulate breast cancer, and identification of breast cancer-specific MAM-resident proteins may help to develop novel therapeutic strategies for breast cancer.


2011 ◽  
Vol 7 (2) ◽  
pp. 97 ◽  
Author(s):  
Niels Voigt ◽  
Dobromir Dobrev ◽  
◽  

Atrial fibrillation (AF) is the most common arrhythmia and is associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. Present drugs used for the therapy of AF (antiarrhythmics and anticoagulants) have major limitations, including incomplete efficacy, risks of life-threatening proarrhythmic events and bleeding complications. Non-pharmacological ablation procedures are efficient and apparently safe, but the very large size of the patient population allows ablation treatment of only a small number of patients. These limitations largely result from limited knowledge about the underlying mechanisms of AF and there is a hope that a better understanding of the molecular basis of AF may lead to the discovery of safer and more effective therapeutic targets. This article reviews the current knowledge about AF-related ion-channel remodelling and discusses how these alterations might affect the efficacy of antiarrhythmic drugs.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Author(s):  
Charles Roddie

When interacting with others, it is often important for you to know what they have done in similar situations in the past: to know their reputation. One reason is that their past behavior may be a guide to their future behavior. A second reason is that their past behavior may have qualified them for reward and cooperation, or for punishment and revenge. The fact that you respond positively or negatively to the reputation of others then generates incentives for them to maintain good reputations. This article surveys the game theory literature which analyses the mechanisms and incentives involved in reputation. It also discusses how experiments have shed light on strategic behavior involved in maintaining reputations, and the adequacy of unreliable and third party information (gossip) for maintaining incentives for cooperation.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


2021 ◽  
Vol 10 (11) ◽  
pp. 2457
Author(s):  
Birgit J. Gerecke ◽  
Rolf Engberding

Noncompaction cardiomyopathy (NCCM) has gained increasing attention over the past twenty years, but in daily clinical practice NCCM is still rarely considered. So far, there are no generally accepted diagnostic criteria and some groups even refuse to acknowledge it as a distinct cardiomyopathy, and grade it as a variant of dilated cardiomyopathy or a morphological trait of different conditions. A wide range of morphological variants have been observed even in healthy persons, suggesting that pathologic remodeling and physiologic adaptation have to be differentiated in cases where this spongy myocardial pattern is encountered. Recent studies have uncovered numerous new pathogenetic and pathophysiologic aspects of this elusive cardiomyopathy, but a current summary and evaluation of clinical patient management are still lacking, especially to avoid mis- and overdiagnosis. Addressing this issue, this article provides an up to date overview of the current knowledge in classification, pathogenesis, pathophysiology, epidemiology, clinical manifestations and diagnostic evaluation, including genetic testing, treatment and prognosis of NCCM.


Sign in / Sign up

Export Citation Format

Share Document