scholarly journals AC Analysis of Differential Active Balun Topology

Author(s):  
Frederick Ray I. Gomez

The current manuscript aimed to study a differential active balun circuit in terms of the small-signal analysis, implemented in a standard 90-nm complementary metal-oxide semiconductor (CMOS) technology. Small-signal or alternating current (AC) response or frequency response of the active balun determines the maximum frequency of operation and the effective bandwidth of the circuit. With the analysis, the active balun circuit could be modeled and designed to achieve gain or attenuation at the desired frequency of operation. Design tradeoffs are inevitable and are carefully considered in the analysis and design. Eventually, the differential active balun design achieved a gain difference better than 1 dB and a phase difference of 180°±10° or better at the frequency of operation of 5.8 GHz, comparable to previous designs and researches.

2020 ◽  
Vol 19 ◽  

The endeavor to overcome problems of complementary metal oxide semiconductor technology makes the advent of Carbon nanotube field effect transistor (CNTFET). Improvement of structure transistor CNTFET makes higher mobility and electrostatics of gate electrons. Therefore, many analog circuits are now designed based on CNTFET technology. This paper presents a low power current mode four-quadrant analog multiplier based on CNTFET and CMOS technologies. All simulations were done with the synopsys Hspice simulator using 32nm CNTFET model from Stanford University and 32nm CMOS from PTM library at a supply voltage of 3.3 v. It was shown that the simulation of a multiplier based on CNTFET technology performs better than a multiplier based on CMOS technology.


Author(s):  
Frederick Ray I. Gomez

The paper presents a study of common-gate amplifier focused in small-signal analysis. Small-signal or frequency response of the amplifier determines the maximum frequency of operation and the effective bandwidth of the circuit. With the analysis, the circuit could be modeled and designed to achieve gain at the desired frequency of operation. Design tradeoffs are inevitable and are carefully considered in the analysis and design, for radio frequency (RF) applications.


Author(s):  
Frederick Ray I. Gomez ◽  
Maria Theresa G. De Leon ◽  
John Richard E. Hizon

This research paper presents a design and study of a common-source/drain active balun circuit implemented in a standard 90-nm complementary metal-oxide semiconductor (CMOS) technology.  The active balun design is intended for worldwide interoperability for microwave access (WiMAX) application, with operating frequency of 5.8GHz and supply voltage of 1V.  Measurements are taken for parameters namely gain difference, phase difference, and noise figure.  The common-source active balun design achieved a minimal gain difference of 0.016dB, phase difference of 180° ± 7.1°, and noise figure of 7.42-9.85dB, which are comparable to past active balun designs and researches.  The design eventually achieved a low power consumption of 2.56mW.


2021 ◽  
Vol 50 (16) ◽  
pp. 5540-5551
Author(s):  
Almudena Notario-Estévez ◽  
Xavier López ◽  
Coen de Graaf

This computational study presents the molecular conduction properties of polyoxovanadates V6O19 (Lindqvist-type) and V18O42, as possible successors of the materials currently in use in complementary metal–oxide semiconductor (CMOS) technology.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


1998 ◽  
Vol 37 (Part 1, No. 3B) ◽  
pp. 1050-1053 ◽  
Author(s):  
Masayasu Miyake ◽  
Toshio Kobayashi ◽  
Yutaka Sakakibara ◽  
Kimiyoshi Deguchi ◽  
Mitsutoshi Takahashi

2016 ◽  
Vol 8 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Boris Moret ◽  
Nathalie Deltimple ◽  
Eric Kerhervé ◽  
Baudouin Martineau ◽  
Didier Belot

This paper presents a 60 GHz reconfigurable active phase shifter based on a vector modulator implemented in 65 nm complementary metal–oxide–semiconductor technology. This circuit is based on the recombination of two differential paths in quadrature. The proposed vector modulator allows us to generate a phase shift between 0° and 360°. The voltage gain varies between −13 and −9 dB in function of the phase shift generated with a static consumption between 26 and 63 mW depending on its configuration.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 243 ◽  
Author(s):  
Padmanabhan Balasubramanian ◽  
Douglas Maskell ◽  
Nikos Mastorakis

Adder is an important datapath unit of a general-purpose microprocessor or a digital signal processor. In the nanoelectronics era, the design of an adder that is modular and which can withstand variations in process, voltage and temperature are of interest. In this context, this article presents a new robust early output asynchronous block carry lookahead adder (BCLA) with redundant carry logic (BCLARC) that has a reduced power-cycle time product (PCTP) and is a low power design. The proposed asynchronous BCLARC is implemented using the delay-insensitive dual-rail code and adheres to the 4-phase return-to-zero (RTZ) and the 4-phase return-to-one (RTO) handshaking. Many existing asynchronous ripple-carry adders (RCAs), carry lookahead adders (CLAs) and carry select adders (CSLAs) were implemented alongside to perform a comparison based on a 32/28 nm complementary metal-oxide-semiconductor (CMOS) technology. The 32-bit addition was considered for an example. For implementation using the delay-insensitive dual-rail code and subject to the 4-phase RTZ handshaking (4-phase RTO handshaking), the proposed BCLARC which is robust and of early output type achieves: (i) 8% (5.7%) reduction in PCTP compared to the optimum RCA, (ii) 14.9% (15.5%) reduction in PCTP compared to the optimum BCLARC, and (iii) 26% (25.5%) reduction in PCTP compared to the optimum CSLA.


Author(s):  
Florent Torres ◽  
Eric Kerhervé ◽  
Andreia Cathelin ◽  
Magali De Matos

Abstract This paper presents a 31 GHz integrated power amplifier (PA) in 28 nm Fully Depleted Silicon-On-Insulator Complementary Metal Oxide Semiconductor (FD-SOI CMOS) technology and targeting SoC implementation for 5 G applications. Fine-grain wide range power control with more than 10 dB tuning range is enabled by body biasing feature while the design improves voltage standing wave ratio (VSWR) robustness, stability and reverse isolation by using optimized 90° hybrid couplers and capacitive neutralization on both stages. Maximum power gain of 32.6 dB, PAEmax of 25.5% and Psat of 17.9 dBm are measured while robustness to industrial temperature range and process spread is demonstrated. Temperature-induced performance variation compensation, as well as amplitude-to-phase modulation (AM-PM) optimization regarding output power back-off, are achieved through body-bias node. This PA exhibits an International Technology Roadmap for Semiconductors figure of merit (ITRS FOM) of 26 925, the highest reported around 30 GHz to authors' knowledge.


2021 ◽  
Author(s):  
Akhil Dodda ◽  
Darsith Jayachandran ◽  
Shiva Subbulakshmi Radhakrishnan ◽  
Saptarshi Das

Abstract Natural intelligence has many dimensions, and in animals, learning about the environment and making behavioral changes are some of its manifestations. In primates vision plays a critical role in learning. The underlying biological neural networks contain specialized neurons and synapses which not only sense and process the visual stimuli but also learns and adapts, with remarkable energy efficiency. Forgetting also plays an active role in learning. Mimicking the adaptive neurobiological mechanisms for seeing, learning, and forgetting can, therefore, accelerate the development of artificial intelligence (AI) and bridge the massive energy gap that exists between AI and biological intelligence. Here we demonstrate a bio-inspired machine vision based on large area grown monolayer 2D phototransistor array integrated with analog, non-volatile, and programmable memory gate-stack that not only enables direct learning, and unsupervised relearning from the visual stimuli but also offers learning adaptability under photopic (bright-light), scotopic (low-light), as well as noisy illumination conditions at miniscule energy expenditure. In short, our “all-in-one” hardware vision platform combines “sensing”, “computing” and “storage” not only to overcome the von Neumann bottleneck of conventional complementary metal oxide semiconductor (CMOS) technology but also to eliminate the need for peripheral circuits and sensors.


Sign in / Sign up

Export Citation Format

Share Document