scholarly journals Impact of Base Station Site, Antenna Configuration and Power Control in LTE Network

Author(s):  
Alhassan Shilo Shekwonya ◽  
Lebe Nnanna

This study analyzed the impact of spatial distribution of APs/Base stations, antenna configuration and power control in a dense populated area like Owerri (Nigeria), using link planner network simulator and Google-Earth Software. High-effective data capacity at hotspots in conjunction with bandwidth and the predicted power at the receiver for LTE network are required to capture some  number of users and provide high data rates over the Wi-Fi interface. The data rates are influenced by the terrain, which loses throughput due to delays, path loss and interference. The hotspot range which determines the number of users, that can associate, is limited by the power of the client and the access point. The variables that affect link performance, such as: band, region, equipment, antenna, height, terrain and obstructions towards providing enhanced capacity and coverage are measured by the link planner. The characteristics like gain, beam, width and frequency, for evaluation of results in terms of coverage and capacity for different antenna configurations, receive-Power, terrain, bandwidth and distances are also observed respectively. The results show that pathloss increases or decreases with these factors between nodes. The strategy to place the transmitter in the highest position has also proven better performance for implementation of the LTE system and its long run operation.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
Yiqiao Wei ◽  
Shuzhi Liu ◽  
Seung-Hoon Hwang

In this paper, we investigate the coexistence of the 5G communication network with a fixed-satellite service (FSS) in the 3.5 GHz and 26 GHz frequency bands. We analyze a distance protection scheme for the FSS Earth station (ES) and 5G base stations (BS). Furthermore, we define the exclusion and restriction zones to develop a transmit power control scheme based on the Citizens Broadband Radio Service (CBRS). An interactive power control scheme is also devised for the restriction zone and extensively analyzed through simulations. The proposed scheme is examined for practical scenarios such as the rural macrocells (RMa), urban macrocells (UMa), and urban microcells (UMi) as defined by the 3GPP. The impact of the antenna type is also investigated, and BSs with omnidirectional, 4 × 4, 8 × 8, and 16 × 16 antenna arrays are examined, as defined by 3GPP, for the 5G networks. The results confirm that 5G systems can coexist with the FSS and provide quantitative insights into the selection of the system parameters, including interference margins, exclusion sizes, and reduction zones, for different scenarios and antenna types.


2019 ◽  
Vol 9 (4) ◽  
pp. 43-48
Author(s):  
Rizal Aji Istantowi

4G LTE networks in big cities are already well available. Meanwhile, on small to medium-sized cities, the 4G LTE network is not evenly distributed and maximized. This study chooses the variable tilting antenna to the coverage area, because in sending information from a base station using an antenna. The average RSRP value (dBm) of the existing base station in the calculation with a distance of 200 m is -122.90 dBm, a distance of 500 m is -136.79 dBm, and a distance of 1000 m -147.30 dBm. Meanwhile, in the simulation with a distance of 200 m of -108.22 dBm, a distance of 500 m of -121.81 dBm, and a distance of 1000 m of -132.69 dBm. The coverage area value of the existing base station in the calculation is 5.29%, while in the simulation it is 11.18%. The average RSRP value (dBm) at optimal conditions for calculations at a distance of 200 m is -80.13 dBm, at a distance of 500 m is -94.03 dBm and at a distance of 1000 m is -104.56 dBm. Meanwhile, the simulation at a distance of 200 m is -98.09 dBm, at a distance of 500 m is -112.79 dBm and at a distance of 1000 m is -123.31 dBm. The value of the coverage area for the calculation is 20.32%, while for the simulation it is 15.01%. The current need for base stations in Trenggalek District that has been met is 68%.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 90
Author(s):  
Shivangini Saxena ◽  
Dr R.P. Singh

As wireless communication turns out to be more common, the interest for higher rates of data transfer and continuous availability is expanding. Future wireless systems are provisioned to be very heterogeneous and interconnected. Higher data rates and Quality of Service (Qos) are two major expectations from any wireless technology. Fading is the main phenomenon which restricts the realization of Qos demand and higher data rates in wireless technologies. Fading is caused by obstacles in signal path which degrades the received signal’s quality. To mitigate the impact of fading on communication system the application of precoding techniques can be used. In this regard, this paper presents optimization of Block-Diagonalization (BD) based linear precoding scheme for multi-user multiple-input multiple output (MU-MIMO) systems. Simulation environment consists of a MIMO downlink scenario where a single base station (BS) with  antennas transmits to K receivers each with  antenna. The application of Particle Swarm Optimization (PSO) is used to find the optimal number of received antennas so as to reduce system complexity while maintaining Bit Error Rate (BER) performance of the system. MATLAB based simulation scenario is presented and evaluated over Rayleigh fading environment. Simulation results validate that the performance of Block– Diagonalization scheme can be improved up to 5dB with the application of Particle Swarm Optimization technique. 


2021 ◽  
Author(s):  
Lilatul Ferdouse

Cellular based M2M systems generate massive number of access requests which create congestion in the cellular network. The contention-based random access procedures are designed for cellular networks which cannot accommodate a large number of M2M traffic. Moreover, M2M systems share same radio resources with cellular users. Resource allocation problem becomes a challenging issue in cellular M2M systems. In this thesis, we address these two problems by analyzing a contention-based slotted Aloha random access procedure for M2M networks using different performance metrics. The impact of massive M2M traffic over cellular traffic is studied based on different arrival rate, random access opportunity and throughput. An analytical model of selecting a base station (eNB) along with load balancing is developed. Finally, two methods have been presented and evaluated with M2M traffic. First one is dynamic access class barring method which controls RAN level congestion by selecting an appropriate eNB and applying load balancing method. Second one is relay-assisted radio resource allocation method which maximizes the sum throughput of the system by utilizing the available radio resource blocks and relay nodes to the MTC systems. Numerical results show that frame transmission rate influences the selection probability of the base stations. Moreover, the dynamic access class barring parameter along with frame transmission rate improve the overall throughput and access success probability among base stations as well as avoid overload situation in a particular base station.


Telecom IT ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 35-59
Author(s):  
G. Fokin

In this paper, we investigate the dependence of the level of intersystem interference on the beam width of the adaptively formed antenna radiation pattern and the territorial separation of neighboring devices in ultra-dense 5G radio access networks. The results of simulation modeling of a radio access network based on 19 base stations with the parameterization of the antenna array gain by the width of the radiation pattern in the horizontal plane show that when the base station beam is di-rected to the user device and narrowed from 360° to 5°, the level of intrasystem interference decreases by 15 dB compared with the case of omnidirectional antennas. The results of simulation of a radio access network based on 19 three-sector base stations with planar antenna arrays of 64 elements illustrate a significant reduction in the level of interference in comparison with the case of omnidirectional antennas and, in order to obtain zones of a positive signal-to-noise ratio, confirm the need for a territorial separation of neighboring devices by 10–20 % of the range of radio coverage.


Wireless sensor networks are used today in numerous applications. Due to the limited battery, storage and processing power, the sensor node absorbs the environment and sends data to the base station. Wireless sensor networks are vulnerable to various attacks due to their limited functionality. Clone node is the attack where adversary physically grabs the node from its location & generates various nodes by using secret information and reflects them on the network. Due to node cloning, various attacks can easily occur in WSN. In this paper, we describe the layer by layer attacks generated by the clone node in WSN. We compare the network scenarios in Network Simulator 2 in which first scenario are normal network & second scenario has the clone nodes which produce the attack inside network. We estimate the impact of clone node in form of packet loss and also compare packet loss rate in normal network and clone node containing network in 8 different scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Junpeng Yu ◽  
Hongtao Zhang ◽  
Yuqing Chen ◽  
Yaduan Ruan

In 5G ultradense heterogeneous networks, wireless backhaul, as one of the important base station (BS) resources that affect user services, has attracted more and more attention. However, a user would access to the BS which is the nearest for the user based on the conventional user association scheme, which constrains the network performance improvement due to the limited backhaul capacity. In this paper, using backhaul-aware user association scheme, semiclosed expressions of network performance metrics are derived in ultradense heterogeneous networks, including coverage probability, rate coverage, and network delay. Specifically, all possible access and backhaul links within the user connectable range of BSs and anchor base stations (A-BSs) are considered to minimize the analytical results of outage probability. The outage for the user occurs only when the access link or backhaul link which forms the link combination with the optimal performance is failure. Furthermore, the theoretical analysis and numerical results evaluate the impact of the fraction of A-BSs and the BS-to-user density ratio on network performance metric to seek for a more reasonable deployment of BSs in the practical scenario. The simulation results show that the coverage probability of backhaul-aware user association scheme is improved significantly by about 2× compared to that of the conventional user association scheme when backhaul is constrained.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqi Lei ◽  
Hongbin Chen ◽  
Feng Zhao

The energy efficiency (EE) is a key metric of ultradense heterogeneous cellular networks (HCNs). Earlier works on the EE analysis of ultradense HCNs by using the stochastic geometry tool only focused on the impact of the base station density ratio and ignored the function of different tiers. In this paper, a two-tier ultradense HCN with small-cell base stations (SBSs) and user equipments (UEs) densely deployed in a traditional macrocell network is considered. Firstly, the performance of the ultradense HCN in terms of the association probability, average link spectral efficiency (SE), average downlink throughput, and average EE is theoretically analyzed by using the stochastic geometry tool. Then, the problem of maximizing the average EE while meeting minimum requirements of the average link SE and average downlink throughput experienced by UEs in macrocell and small-cell tiers is formulated. As it is difficult to obtain the explicit expression of average EE, impacts of the SBS density ratio and signal-to-interference-plus-noise ratio (SINR) threshold on the network performance are investigated through numerical simulations. Simulation results validate the accuracy of theoretical results and demonstrate that the maximum value of average EE can be achieved by optimizing the SBS density ratio and the SINR threshold.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5703
Author(s):  
Salbiah Ab Hamid ◽  
Nurul Huda Abd Rahman ◽  
Yoshihide Yamada ◽  
Phan Van Hung ◽  
Dinh Nguyen Quoc

Narrow beam width, higher gain and multibeam characteristics are demanded in 5G technology. Array antennas that are utilized in the existing mobile base stations have many drawbacks when operating at upper 5G frequency bands. For example, due to the high frequency operation, the antenna elements become smaller and thus, in order to provide higher gain, more antenna elements and arrays are required, which will cause the feeding network design to be more complex. The lens antenna is one of the potential candidates to replace the current structure in mobile base station. Therefore, a negative refractive index shaped lens is proposed to provide high gain and narrow beamwidth using energy conservation and Abbe’s sine principle. The aim of this study is to investigate the multibeam characteristics of a negative refractive index shaped lens in mobile base station applications. In this paper, the feed positions for the multibeam are selected on the circle from the center of the lens and the accuracy of the feed position is validated through Electromagnetic (EM) simulation. Based on the analysis performed in this study, a negative refractive index shaped lens with a smaller radius and slender lens than the conventional lens is designed, with the additional capability of performing wide-angle beam scanning.


2012 ◽  
Vol 18 (1) ◽  
pp. 154-169 ◽  
Author(s):  
Jen-Yu Han ◽  
Yu Wu ◽  
Rou-Yu Liu

The relative positioning technique plays an essential role in Global Navigation Satellite System (GNSS) surveys. Simultaneous observation at base and rover stations eliminates the majority of error sources thus the quality of a positioning solution can be substantially improved. However, topographic obstruction is still a key issue affecting positioning quality. In this study, an integrated approach for analyzing the impact of topographic obstruction on GNSS relative positioning has been developed. By considering varied satellite geometry according to actual terrain variation, this approach can be used to realistically determine satellite visibility condition for a specific base station with respect to any rover station. Furthermore, a base station quality index (BSQI) is proposed as an explicit indication of the sufficiency in a relative positioning. By incorporating the proposed approach, one can immediately identify an optimal site location for a GNSS base station with subsequent GNSS field survey thus achieved in a more reliable and cost-efficient manner.


Sign in / Sign up

Export Citation Format

Share Document