scholarly journals DOLOS-ARMORED BREAKWATERS: SPECIAL CONSIDERATIONS

1978 ◽  
Vol 1 (16) ◽  
pp. 136 ◽  
Author(s):  
Robert D. Carver ◽  
D. Donald Davidson

Rubble-mound breakwaters are used extensively throughout the world to provide protection from the destructive forces of storm waves for harbor and port facilities. In some locations, a proposed rubble-mound breakwater may be subject to attack by waves of such magnitude that quarrystone of adequate size to provide economic construction of a stable breakwater is not available. Under these circumstances, it is required that the protective cover layer consist of specially shaped concrete armor units. In 1966, Merrifield and Zwamborn (1) introduced a new shape of armor unit, the dolos (Figure 1) which was acclaimed to have much higher stability characteristics than any existing armor unit. Site-specific model tests conducted at the U. S. Army Engineer Waterways Experiment Station (WES) by Davidson (2); Carver (3); Bottin, Chatham, and Carver (4): and Carver and Davidson (5) have shown dolos to exhibit an excellent stability response when exposed to breaking wave conditions. Comprehensive stability tests of dolos also have been conducted at WES by Carver and Davidson (6) for a wide range of nonbreaking wave conditions. These tests used randomly placed dolosse with a first underlayer stone weight of W /5 and a density of units per given area (N/A) equal to 0.83 V~2'3, i!e., n=2, k =0.94, and P=56 percent. It was concluded from this study that the stability response of dolos can be adequately predicted by the Hudson Stability Equation for the range of wave conditions investigated. Their data indicated an average stability coefficient (K) of 33 for dolosse use in a nonbreaking nonovertopping wave environment. Based on the lower limit scatter of their data, a K of 31 was approved for design.

2011 ◽  
Vol 1 (8) ◽  
pp. 25
Author(s):  
A. Paape ◽  
A.W. Walther

A new specially shaped concrete block, the "Akmon", to be used as armour unit for protective cover layers of rubble mound breakwaters is presented. The characteristics as have been derived from laboratory tests are compared with those of various other types of blocks. Some considerations are given on the design procedure for cover layers, as it appears that this procedure has an influence on the block-type and -weight to be chosen. If armour units have to be placed at random, which is in many oases an imperative necessity, the akmon appears to be one of the most suitable blocks developed up till now. For two different breakwaters, the results are given of model investigations concerning the stability under the attack of waves generated by a wave board and wind.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-81
Author(s):  
Sajana Manandhar ◽  
Erica Sjöholm ◽  
Johan Bobacka ◽  
Jessica M. Rosenholm ◽  
Kuldeep K. Bansal

Since the last decade, the polymer-drug conjugate (PDC) approach has emerged as one of the most promising drug-delivery technologies owing to several benefits like circumventing premature drug release, offering controlled and targeted drug delivery, improving the stability, safety, and kinetics of conjugated drugs, and so forth. In recent years, PDC technology has advanced with the objective to further enhance the treatment outcomes by integrating nanotechnology and multifunctional characteristics into these systems. One such development is the ability of PDCs to act as theranostic agents, permitting simultaneous diagnosis and treatment options. Theranostic nanocarriers offer the opportunity to track the distribution of PDCs within the body and help to localize the diseased site. This characteristic is of particular interest, especially among those therapeutic approaches where external stimuli are supposed to be applied for abrupt drug release at the target site for localized delivery to avoid systemic side effects (e.g., Visudyne®). Thus, with the help of this review article, we are presenting the most recent updates in the domain of PDCs as nanotheranostic agents. Different methodologies utilized to design PDCs along with imaging characteristics and their applicability in a wide range of diseases, have been summarized in this article.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2021 ◽  
Vol 7 (3) ◽  
pp. 52
Author(s):  
Yazan Hamzeh ◽  
Samir A. Rawashdeh

Research on the effect of adverse weather conditions on the performance of vision-based algorithms for automotive tasks has had significant interest. It is generally accepted that adverse weather conditions reduce the quality of captured images and have a detrimental effect on the performance of algorithms that rely on these images. Rain is a common and significant source of image quality degradation. Adherent rain on a vehicle’s windshield in the camera’s field of view causes distortion that affects a wide range of essential automotive perception tasks, such as object recognition, traffic sign recognition, localization, mapping, and other advanced driver assist systems (ADAS) and self-driving features. As rain is a common occurrence and as these systems are safety-critical, algorithm reliability in the presence of rain and potential countermeasures must be well understood. This survey paper describes the main techniques for detecting and removing adherent raindrops from images that accumulate on the protective cover of cameras.


2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Prasad Lakshmi ◽  
Neethu Elsa Anil

Silos are used by a wide range of industries to store bulk solids in quantities ranging from a few tones to hundreds or thousands of tones. They can be constructed of steel or reinforced concrete. Steel bins range from heavily stiffened flat plate structures to efficient unstiffened shell structures. They can be closed or open. They are subjected to many different static and dynamic loading conditions, mainly due to the unique characteristics of stored materials. Wind and earthquake load often undermine the stability of the silos. A steel silo with and without stiffeners is adopted and static structural analysis and dynamic analysis is done. The analysis is done by idealizing geometry, material and boundary conditions. Keywords: steel, reinforced concrete, silos.


Author(s):  
Guru Venkatesan ◽  
Andy Sarles

Droplet-based biomolecular arrays form the basis for a new class of bioinspired material system, whereby decreasing the sizes of the droplets and increasing the number of droplets can lead to higher functional density for the array. In this paper, we report on a non-microfluidic approach to form and connect nanoliter-to-femtoliter, lipid-coated aqueous droplets in oil to form micro-droplet interface bilayers (μDIBs). Two different modes of operation are reported for dispensing a wide range of droplet sizes (2–200μm radius). Due to the high surface-area-to-volume ratios of microdroplets at these length scales, droplet shrinking is prominent, which affects the stability and lifetime of the bilayer. To better quantify these effects, we measure the shrinkage rates for 8 different water droplet/oil compositions and study the effect of lipid placement and lipid type on morphological changes to μDIBs.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


2006 ◽  
Vol 129 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Koichi Matsuda ◽  
Shinya Kijimoto ◽  
Yoichi Kanemitsu

The whirl instability occurs at higher rotating speeds for a full circular fluid-film journal bearing, and many types of clearance configuration have been proposed to solve this instability problem. A clearance configuration of fluid-film journal bearings is optimized in a sense of enhancing the stability of the full circular bearing at high rotational speeds. A performance index is chosen as the sum of the squared whirl-frequency ratios over a wide range of eccentricity ratios, and a Fourier series is used to represent an arbitrary clearance configuration of fluid-film bearings. An optimization problem is then formulated to find the Fourier coefficients to minimize the index. The designed bearing has a clearance configuration similar to that of an offset two-lobe bearing for smaller length-to-diameter ratios. It is shown that the designed bearing cannot destabilize the Jeffcott rotor at any high rotating speed for a wide range of eccentricity ratio. The load capacity of the designed bearings is nearly in the same magnitude as that of the full circular bearing for smaller length-to-diameter ratios. The whirl-frequency ratios of the designed bearing are very sensitive to truncating higher terms of the Fourier series for some eccentricity ratio. The designed bearings successfully enhance the stability of a full circular bearing and are free from the whirl instability.


Sign in / Sign up

Export Citation Format

Share Document