scholarly journals Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap

2021 ◽  
Vol 33 (5) ◽  
pp. 203-216
Author(s):  
Tag-Gyeom Kim ◽  
Do-Sam Kim ◽  
Yong-Hwan Cho ◽  
Kwang-Ho Lee

Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

Studies of animal behavior often assume that all members of a species exhibit the same behavior. Geographic Variation in Behavior shows that, on the contrary, there is substantional variation within species across a wide range of taxa. Including work from pioneers in the field, this volume provides a balanced overview of research on behavioral characteristics that vary geographically. The authors explore the mechanisms by which behavioral differences evolve and examine related methodological issues. Taken together, the work collected here demonstrates that genetically based geographic variation may be far more widespread than previously suspected. The book also shows how variation in behavior can illuminate both behavioral evolution and general evolutionary patterns. Unique among books on behavior in its emphasis on geographic variation, this volume is a valuable new resource for students and researchers in animal behavior and evolutionary biology.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


2003 ◽  
Vol 125 (2) ◽  
pp. 572-579 ◽  
Author(s):  
S. A. Nelson ◽  
Z. S. Filipi ◽  
D. N. Assanis

A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder 14-liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, a family of compressors of different sizes is represented with a single neural net model which is subsequently used for matching calculations with intercooled and nonintercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options within a wide range of possible compressor configurations prior to prototype production. It can also be used to represent the variable geometry machine regardless of the method used to vary compressor characteristics. Hence, it is a powerful design tool for selection of the best compressor for a given diesel engine system and for broader system optimization studies.


2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
Bhagirath S. Chauhan ◽  
Shane Campbell ◽  
Victor J. Galea

Abstract Sweet acacia [Vachellia farnesiana (L.) Willd.]is a problematic thorny weed species in several parts of Australia. Knowledge of its seed biology could help to formulate weed management decisions for this and other similar species. Experiments were conducted to determine the effect of hot water (scarification), alternating temperatures, light, salt stress, and water stress on seed germination of two populations of V. farnesiana and to evaluate the response of its young seedlings (the most sensitive development stage) to commonly available POST herbicides in Australia. Both populations behaved similarly to all the environmental factors and herbicides; therefore, data were pooled over the populations. Seeds immersed in hot water at 90 C for 10 min provided the highest germination (88%), demonstrating physical dormancy in this species. Seeds germinated at a wide range of alternating day/night temperatures from 20/10 C (35%) to 35/25 C (90%) but no seeds germinated at 15/5 C. Germination was not affected by light, suggesting that seeds are nonphotoblastic and can germinate under a plant canopy or when buried in soil. Germination was not affected by sodium chloride concentrations up to 20 mM and about 50% of seeds could germinate at 160 mM sodium chloride, suggesting its high salt tolerance ability. Germination was only 13% at −0.2 MPa osmotic potential and no seeds germinated at −0.4 MPa, suggesting that V. farnesiana seeds may remain ungerminated until moisture conditions have become conducive for germination. A number of POST herbicides, including 2,4-D + picloram, glufosinate, paraquat and saflufenacil, provided >85% control of biomass of young seedlings compared with the nontreated control treatment. Knowledge gained from this study will help to predict the potential spread of V. farnesiana in other areas and help to integrate herbicide use with other management strategies.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Philip L. Andrew ◽  
Harika S. Kahveci

Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed—one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a boundary layer code, MISES, versus experimental data from a 2D linear cascade approximating the performance of a moderately loaded mid-pitch section from a modern aircraft high-pressure turbine. The validation versus measured loading, turning, and total pressure loss is presented for a range of exit Mach numbers from ≈0.5 to 1.2 and across a range of incidence from −10 deg to +14.5 deg relative to design incidence.


2021 ◽  
Vol 30 (4) ◽  
pp. 237-242
Author(s):  
Lilian Ricaud ◽  
Maxime Thibon ◽  
Laurent Marseault ◽  
Jean-Luc Chotte

Humanity is facing global and local sustainability challenges that call for the involvement of a wide range of expertise drawn from academia, civil society, the private sector, as well as funding and development agencies. The challenge will be to leverage this diversity to nurture decision making. To make such discussions successful we propose a pattern language approach. It can be used as a practical step-by-step process to guide interdisciplinary collaboration between researchers and to facilitate transdisciplinary interactions between the academic and nonacademic worlds. The patterns are documented and freely accessible online in the Sustainable Science Pattern database.


1991 ◽  
Vol 113 (3) ◽  
pp. 219-227 ◽  
Author(s):  
A. Cornett ◽  
M. D. Miles

This paper describes the generation and verification of four realistic sea states in a multidirectional wave basin, each representing a different storm wave condition in the Gulf of Mexico. In all cases, the degree of wave spreading and the mean direction of wave propagation are strongly dependent on frequency. Two of these sea states represent generic design wave conditions typical of hurricanes and winter storms and are defined by JONSWAP wave spectra and parametric spreading functions. Two additional sea states, representing the specific wave activity during hurricanes Betsy and Carmen, are defined by tabulated hindcast estimates of the directional wave energy spectrum. The Maximum Entropy Method (MEM) of directional wave analysis paired with a single-wave probe/ bi-directional current meter sensor is found to be the most satisfactory method to measure multidirectional seas in a wave basin over a wide range of wave conditions. The accuracy of the wave generation and analysis process is verified using residual directional spectra and numerically synthesized signals to supplement those measured in the basin. Reasons for discrepancy between the measured and target directional wave spectra are explored. By attempting to reproduce such challenging sea states, much has been learned about the limitations of simulating real ocean waves in a multidirectional wave basin, and about techniques which can be used to minimize the associated distortions to the directional spectrum.


Sign in / Sign up

Export Citation Format

Share Document