scholarly journals Evaluation of Low Cost-Activated Carbon Produced from Waste Tyres Pyrolysis for Removal of 2-Chlorophenol

Author(s):  
Kanchana Manirajah ◽  
Sheela V. Sukumaran ◽  
NorNasuha Abdullah ◽  
Hazirah A. Razak ◽  
Nurul Ainirazali

A low cost Activated Carbon (AC) was prepared by using waste tyres as raw material for the removal of 2-chlorophenol (2-CP). The AC adsorbent was prepared and activated by pyrolysis process at 900 ºC under constant nitrogen flow. The physical properties of the AC produced was characterized using X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infra Red (FTIR). The influence of initial adsorbate concentration, pH and adsorbent dosage on the removal of 2-CP in the batch-operational mode at ambient temperature were also investigated. The results obtained showed the AC presence of an amorphous carbon with high BET surface area and a total pore volume of 208 m2.g-1 and 0.5817 cm3, respectively. The highest adsorption capacity of 2-CP by the AC absorbent was achieved at an initial concentration of 10 mg.L-1, pH 5, and adsorbent dosage of 0.5 g in the first 10 min of contact time. This finding proves that the low cost-AC produced from waste tyres can be utilized for an effective removal of chemical plant wastewater containing toxic chlorine substances. Copyright © 2019 BCREC Group. All rights reserved 

Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 114 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Chien-Hung Hsu ◽  
Yu-Quan Lin

The use of biochar in the horticulture and crop fields is a recent method to improve soil fertility due to its porous features and rich nutrients. In the present study, dairy manure (DM) was used as a biomass precursor in the preparation of highly porous biochar (DM-BC) produced at specific conditions. Based on N2 adsorption-desorption isotherms and scanning electron microscopy (SEM) observations, the resulting biochar featured its microporous/mesoporous textures with a BET surface area of about 300 m2/g and total pore volume of 0.185 cm3/g, which could be a low-cost biosorbent for the effective removal of methylene blue (MB) from the aqueous solution. As observed by the energy dispersive X-ray spectroscopy (EDS), the primary inorganic nutrients on the surface of DM-BC included calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), silicon (Si), sulfur (S), sodium (Na) and aluminum (Al). Furthermore, the resulting biochar was investigated in duplicate for its biosorption performance of cationic compound (i.e., methylene blue, MB) from the aqueous solution with various initial MB concentrations and DM-BC dosages at 25 °C. The findings showed that the biosorption kinetic parameters fitted by the pseudo-second order rate model with high correlations were consistent with its porous features. These experimental results suggested that the porous DM-based biochar could be reused as a biosorbent, biofertilizer, or soil amendments due to the high porosity and the abundance in nutrient minerals.


2021 ◽  
Vol 14 ◽  
pp. 1-9
Author(s):  
Nur rahimah Said ◽  
Hazirah Syahirah Zakria ◽  
Siti Nor Atika Baharin ◽  
Nurul' Ain Jamion

Azo dyes are recognised as contaminants from the textile and printing industries that lead to human toxicity. Copper(II) activated carbon (CuAC) is an effective removal agent of dyes in these industries. The purpose of this study is to synthesise and characterise CuAC from date seeds. In addition, the efficiency of CuAC as a removal of Congo red (CR) in aqueous solution is also studied. Activated carbon (AC) was prepared from date seeds using phosphoric acid as activating agent, followed by activation process in a furnace at 500 ℃ for 2 hours. Copper(II) nitrate was used in the impregnation of AC to produce CuAC. The AC and CuAC were characterised using Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), BET surface area (SBET), Scanning Electron Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-EDX), Atomic Absorption Spectroscopy (AAS) and X-Ray Diffraction (XRD). UV-VIS Spectroscopy was used to determine dye concentrations after treatment with removal agent of CuAC. The characterisation data proved that the CuAC has been successfully synthesised with 0.33% Cu(II) loaded onto AC and its surface area increased from 8.37 m2/g to 384.82 m2/g. The dye removal study was conducted at 10 ppm concentration of dye. Result revealed that 0.2 g of CuAC at pH 2 in 90 min removed 100% of CR dye.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2133-2146
Author(s):  
Gervais Kounou Ndongo ◽  
Ndi Julius Nsami ◽  
Ketcha Joseph Mbadcam

Ferromagnetic activated carbon (FAC) was prepared through impregnation of cassava peel with FeCl3 (3.75%) solution and pyrolyzed at 800 °C. Samples were characterized using iodine number, methylene blue number, X-ray fluorescence, Fourier transformation infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy, elemental analysis and N2 adsorption for surface area determination. The proximate analysis of cassava peel showed that the moisture content, fixed carbon, ash content, and the volatile matter were 3.52%, 82.97%, 4.97%, and 8.54%, respectively. The prepared FAC had a BET surface area of 405.9 m2/g, pore size of 2.03 nm and total pore volume of 0.11 cm3/g. The SEM analysis showed the presence of both micro and mesopores on the FAC sample. The XRD pattern of FAC showed the presence of characteristic peaks of magnetite–maghemite, confirming that the prepared material is ferromagnetic. According to the experimental results, the cassava peels are considered as appropriate raw material for FAC preparation.


2018 ◽  
Vol 78 (10) ◽  
pp. 2158-2170 ◽  
Author(s):  
Mohammad Malakootian ◽  
Alireza Nasiri ◽  
Hakimeh Mahdizadeh

Abstract Ciprofloxacin (CIP) is considered as a biological resistant pollutant. The CoFe2O4/activated carbon@chitosan (CoFe2O4/AC@Ch) prepared as a new magnetic nanobiocomposite and used for adsorption of CIP. CoFe2O4/AC@Ch was characterized by Fourier transform-infrared (FT-IR), field emission scanning electron microscope (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and Brunauer–Emmett–Teller (BET) surface area measurements. The pHZPC value of the nanobiocomposite was estimated to be 6.4 by solid addition method. The prepared magnetic nanobiocomposites can be separated easily from water by an external magnet and reused. The effect of CIP concentration (10–30 mg/L), adsorbent dosage (12–100 mg/L), contact time (5–30 min) and pH (3–11) as independent variables on ciprofloxacin removal efficiency was evaluated. Optimum conditions were obtained in CIP concentration: 10 mg/L, adsorbent dosage: 100 mg/L, contact time: 15 min and pH: 5. In this condition, maximum CIP removal was obtained as 93.5%. The kinetic and isotherm equations showed that the process of adsorption followed the pseudo-second order kinetic and Langmuir isotherm. The results indicate that the prepared magnetic nanobiocomposite can be used as good adsorbent for the removal of CIP from aqueous solution and can be also recycled.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2019 ◽  
Vol 15 (No. 1) ◽  
pp. 30-37 ◽  
Author(s):  
Mohib Ullah ◽  
Ruqia Nazir ◽  
Muslim Khan ◽  
Waliullah Khan ◽  
Mohib Shah ◽  
...  

The removal of toxic metals like lead (Pb) and cadmium (Cd) is very urgent keeping their hazardous effects in view. In this work, seeds of Albizia lebbeck and Melia azedarach trees were converted into activated carbon adsorbents and applied for the adsorptive removal of Pb and Cd metals from an aqueous solution. The as prepared adsorbents were characterised by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The removal efficiencies of both metals were strongly dependent on their initial concentration, contact time, pH, temperature and the quantity of adsorbents. 0.2 g of both adsorbents removed respectively 75 and 62% Pb and 77 and 66% Cd from from 100 ml of a 40 mg/l concentrated solution in 120 min at pH 5 and a temperature of 20°C. Both the Freundlich and Langmuir isotherms were well fitted to the experimental data. We believe that this work will provide a convenient way to synthesise low cost activated carbon adsorbents for the remediation of highly toxic metals from wastewater to safeguard our environment for future generations.


2019 ◽  
Vol 6 (9) ◽  
pp. 190523 ◽  
Author(s):  
Lu Luo ◽  
Xi Wu ◽  
Zeliang Li ◽  
Yalan Zhou ◽  
Tingting Chen ◽  
...  

Activated carbon (AC) was successfully prepared from low-cost forestry fir bark (FB) waste using KOH activation method. Morphology and texture properties of ACFB were studied by scanning and high-resolution transmission electron microscopies (SEM and HRTEM), respectively. The resulting fir bark-based activated carbon (ACFB) demonstrated high surface area (1552 m 2 g −1 ) and pore volume (0.84 cm 3 g −1 ), both of which reflect excellent potential adsorption properties of ACFB towards methylene blue (MB). The effect of various factors, such as pH, initial concentration, adsorbent content as well as adsorption duration, was studied individually. Adsorption isotherms of MB were fitted using all three nonlinear models (Freundlich, Langmuir and Tempkin). The best fitting of MB adsorption results was obtained using Freundlich and Temkin. Experimental results showed that kinetics of MB adsorption by our ACFB adsorbent followed pseudo-second-order model. The maximum adsorption capacity obtained was 330 mg g −1 , which indicated that FB is an excellent raw material for low-cost production of AC suitable for cationic dye removal.


2019 ◽  
Vol 9 (19) ◽  
pp. 3980 ◽  
Author(s):  
Saowanee Wijitkosum ◽  
Preamsuda Jiwnok

For an agricultural country such as Thailand, converting agricultural waste into biochar offers a potential solution to manage massive quantities of crop residues following harvest. This research studied the structure and chemical composition of biochar obtained from cassava rhizomes, cassava stems and corncobs, produced using a patented locally-manufactured biochar kiln using low-cost appropriate technology designed to be fabricated locally by farmers. The research found that cassava stems yielded the highest number of Brunauer-Emmett-Teller (BET) surface area in the biochar product, while chemical analysis indicated that corncobs yielded the highest amount of C (81.35%). The amount of H in the corncob biochar was also the highest (2.42%). The study also showed biochar produced by slow pyrolysis was of a high quality, with stable C and low H/C ratio. Biochar’s high BET surface area and total pore volume makes it suitable for soil amendment, contributing to reduced soil density, higher soil moisture and aeration and reduced leaching of plant nutrients from the rhizosphere. Biochar also provides a conducive habitat for beneficial soil microorganisms. The findings indicate that soil incorporation of biochar produced from agricultural crop residues can enhance food security and mitigate the contribution of the agricultural sector to climate change impacts.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 450-463
Author(s):  
Xiya Li ◽  
Jieqiong Qiu ◽  
Yiqi Hu ◽  
Xiaoyuan Ren ◽  
Lu He ◽  
...  

The production of low-cost biologically activated carbons (BACs) is urgent need of environmental protection and ecological sustainability. Hence, walnut shells were treated by traditional pyrolysis, direct KOH impregnation and combined activation composed of hydrothermal carbonization and two-step H3PO4- and pyrolysis-activation process to obtain porous carbon with high adsorption capacity. It was found that the best adsorption capacity for iodine and organic dye methylene blue (MB) can be obtained using the KOH impregnation at impregnation ratio of 1:1 or combined activation comprising of 2 h H3PO4 activation and 1 h pyrolysis activation at 1000°C. The produced KOH, H3PO4/pyrolysis activated BACs at the optimum conditions are superior to that of commercial ACs, 9.4 and 1.3 times for MB removal, 4 and 4.5 times for iodine number respectively. Characterization results demonstrated their porous structure with very good textural properties such as high BET surface area (1689.1 m2/g, 1545.3 m2/g) and high total pore volume (0.94 cm3/g, 0.96 cm3/g). The N2 adsorption-desorption isotherm of H3PO4/pyrolysis activated hydrochar suggested the co-existence of micro and meso-pores. Moreover, they are more effective for the removal of Fe(III) and Cr(VI) from aqueous solution than the commercial AC, suggesting a promising application in the field of water treatment.


2016 ◽  
Vol 857 ◽  
pp. 475-479 ◽  
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this work, mesoporous activated carbon with high surface area was synthesized from swamp taro stalk by single step ZnCl2 activation. The synthesized activated carbon was characterized by Na2S2O3 volumetric method, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and N2 adsorption-desorption analyses. Under the single step ZnCl2 activation, the registered iodine number, BET surface area, total pore volume and pore diameter were 1087.57 mgg-1, 1242.26 m2g-1, 0.73cm3g-1 and 3.72 nm respectively with yield of 25.34%. SEM analysis evidenced the well-formation of porous structure. Type IV isotherm with H2 loops obtained from N2-sorption studies indicates the ink bottles shape mesoporous network structure. This research proved the successful conversion of plant waste into high grade activated carbon.


Sign in / Sign up

Export Citation Format

Share Document