CaAIL1 Acts Positively in Pepper Immunity against Ralstonia solanacearum by Repressing Negative Regulators

Author(s):  
Yutong Zheng ◽  
Shicong He ◽  
Weiwei Cai ◽  
Lei Shen ◽  
Xueying Huang ◽  
...  

Abstract APETALA2 (AP2) subfamily transcription factors participate in plant growth and development, but their roles in plant immunity remain unclear. Here, we discovered that the AP2 transcription factor CaAIL1 functions in immunity against Ralstonia solanacearum infection (RSI) in pepper (Capsicum annuum). CaAIL1 expression was upregulated by RSI, and loss- and gain-of-function assays using virus-induced gene silencing and transient overexpression, respectively, revealed that CaAIL1 plays a positive role in immunity to RSI in pepper. Chromatin immunoprecipitation sequencing (ChIP-seq) uncovered a subset of transcription-factor-encoding genes, including CaRAP2-7, CaGATA17, CaGtf3a and CaTCF25, that were directly targeted by CaAIL1 via their cis-elements, such as GT or AGGCA motifs. ChIP-qPCR and electrophoretic mobility shift assays confirmed these findings. These genes, encoding transcription factors with negative roles in immunity, were repressed by CaAIL1 during pepper response to RSI, whereas genes encoding positive immune regulators such as CaEAS were derepressed by CaAIL1. Importantly, we showed that the atypical EAR motif (LXXLXXLXX) in CaAIL1 is indispensable for its function in immunity. These findings indicate that CaAIL1 enhances the immunity of pepper against RSI by repressing a subset of negative immune regulators during the RSI response through its binding to several cis-elements in their promoters.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3837-3837
Author(s):  
Pauline Lee ◽  
Jaroslav Truksa ◽  
Ernest Beutler

Abstract There are two regions of the murine Hamp1 promoter that have been shown to be critical for Hamp1 expression. The 260 bp proximal region and the distal −1.6 to −1.8 Kb regions appear to be required for responsiveness to IL-6, BMPs and iron. Analyses of 160 bp proximal promoter for consensus transcription factor motifs by MatInspector identified a STAT5 site at the location identified previously by Wrighting et al., Blood 2006, as a functional STAT3 site and by Courselaud et al., J Biol Chem 2002, as a C/EBPα site. Although a SMAD responsive site was not predicted in this region, we (in press), and Verga-Falzacappa et al., J Mol Med 2008, have demonstrated that there is a functional BMP responsive element (GGCGCC) in this region. A probe encompassing the putative BMP-RE1, STAT, C/EBPα, and AP1 motifs were used in electrophoretic mobility shift assays (EMSA). We found that the addition of cold competitor DNA corresponding to STAT3, C/EBPα and AP1 consensus motifs did not block the binding of transcription factors from liver nuclear extracts to the BMP-RE1/STAT/C/EBPα/AP1 probe. In contrast, the addition of cold competitor DNA corresponding the SMAD3/4 or STAT5 completely blocked essentially all binding of liver nuclear transcription factors to the BMP-RE1/STAT/C/EBPα/AP1 probe. Analyses of the −161 to −260 bp proximal promoter for consensus transcription factor motifs identified a GATA2 binding site and a SMAD responsive site (TGTCTGCCC). Two long probes encompassing the to −161 to −260 bp region were used in EMSAs. Binding of liver nuclear extracts to a probe encompassing the GATA motif was blocked by the addition of a GATA consensus DNA. Similarly, binding to a long probe encompassing the SMAD responsive site was blocked by the addition of a SMAD3/4 consensus DNA. Analyses of the 1.6 to 1.7 Kb region of the distal murine Hamp1 promoter identified several transcription factor motifs: bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins, COUP-Tf/HNF4α, and MEL1 (MDS1/EVI1-like gene1) to be both in human and mouse Hamp genes. Although a SMAD responsive site was not identified in this region, we have demonstrated that there is a functional BMP responsive element (GGCGCC) in this region. Using EMSA with probes corresponding to the −1.6 to −1.7 bp region of the hepcidin promoter, we examined the binding of transcription factors from liver nuclear extracts derived from mice. Binding of liver nuclear extract to a probe corresponding to the BMP-RE2, bZIP, HNF4α, COUP motifs was blocked by cold competitor probes corresponding to SMAD3/4, HNF4α, COUP-Tf, and Stat5. Whereas competitor probes to Smad3/4 and HNF4α competed for the binding of specific bands to the radiolabelled probe, total binding was blocked with cold competitor probes to the consensus COUP-Tf and Stat5 motifs. Supershift analyses using antibodies to HNF4α, COUP, SMAD4 demonstrated the binding of these transcription factors to the radiolabeled BMP-RE2/bZIP/HNF4α/COUP probe. Binding to a probe encompassing a MEL motif was blocked by the addition of cold competitor to C/EBPα and could be supershifted with antibodies against C/EBPα. In conclusion, SMAD 3/4, COUP-Tf, HNF4α, C/EBPα, GATA2 and STAT5 appear to be important in the regulation of Hamp1 expression.


2018 ◽  
Vol 19 (9) ◽  
pp. 2698 ◽  
Author(s):  
Ailian Qiu ◽  
Ji Wu ◽  
Yufen Lei ◽  
Yiting Cai ◽  
Song Wang ◽  
...  

GSK3-like kinases have been mainly implicated in the brassinosteroids (BR) pathway and, therefore, in plant growth, development, and responses to abiotic stresses; however, their roles in plant immunity remain poorly understood. Herein, we present evidence that CaSK23, a putative GSK3/SHAGGY-like kinase in pepper, acts as a negative regulator in pepper’s response to Ralstonia solanacearum (R. solanacearum) inoculation (RSI). Data from quantitative RT-PCR (qRT-PCR) showed that the constitutively-expressed CaSK23 in pepper leaves was down-regulated by RSI, as well as by exogenously-applied salicylic acid (SA) or methyl jasomonate (MeJA). Silencing of CaSK23 by virus-induced gene silencing (VIGS) decreased the susceptibility of pepper plants to RSI, coupled with up-regulation of the tested genes encoding SA-, JA-, and ethylene (ET)-dependent pathogenesis-related (PR) proteins. In contrast, ectopic overexpression (OE) of CaSK23 conferred a compromised resistance of tobacco plants to RSI, accompanied by down-regulation of the tested immunity-associated SA-, JA-, and ET-dependent PR genes. In addition, transient overexpression of CaSK23 in pepper plants consistently led to down-regulation of the tested SA-, JA-, and ET-dependent PR genes. We speculate that CaSK23 acts as a negative regulator in pepper immunity and its constitutive expression represses pepper immunity in the absence of pathogens. On the other hand, its decreased expression derepresses immunity when pepper plants are attacked by pathogens.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaoliang Mou ◽  
Qianqian Meng ◽  
Feng Gao ◽  
Tingting Zhang ◽  
Weihong He ◽  
...  

Abstract Background Cysteine-rich receptor-like kinases (CRKs) represent a large subfamily of receptor-like kinases and play vital roles in diverse physiological processes in regulating plant growth and development. Results CaCRK5 transcripts were induced in pepper upon the infection of Ralstonia solanacearum and treatment with salicylic acid. The fusions between CaCRK5 and green fluorescence protein were targeted to the plasma membrane. Suppression of CaCRK5 via virus-induced gene silencing (VIGS) made pepper plants significantly susceptible to R. solanacearum infection, which was accompanied with decreased expression of defense related genes CaPR1, CaSAR8.2, CaDEF1 and CaACO1. Overexpression of CaCRK5 increased resistance against R. solanacearum in Nicotiana benthamiana. Furthermore, electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with quantitative real-time PCR analysis revealed that a homeodomain zipper I protein CaHDZ27 can active the expression of CaCRK5 through directly binding to its promoter. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses suggested that CaCRK5 heterodimerized with the homologous member CaCRK6 on the plasma membrane. Conclusions Our data revealed that CaCRK5 played a positive role in regulating immune responses against R. solanacearum infection in pepper.


Author(s):  
Smitha Sivapragasam ◽  
Arpita Ghosh ◽  
Sanjay Kumar ◽  
Danté T Johnson ◽  
Anne Grove

Abstract The stringent response involves accumulation of (p)ppGpp, and it ensures that survival is prioritized. Production of (p)ppGpp requires purine synthesis, and upregulation of an operon that encodes the purine salvage enzyme xanthine dehydrogenase (Xdh) has been observed during stringent response in some bacterial species, where direct binding of ppGpp to a TetR-family transcription factor is responsible for increased xdh gene expression. We show here that the plant pathogen Ralstonia solanacearum has a regulatory system in which the LysR-family transcription factor XanR controls expression of the xan operon; this operon encodes Xdh as well as other enzymes involved in purine salvage, which favor accumulation of xanthine. XanR bound upstream of the xan operon, a binding that was attenuated on addition of either ppGpp or cyclic di-guanosine monophosphate (c-di-GMP). Using a reporter in which enhanced green fluorescent protein (EGFP) is expressed under control of a modified xan promoter, XanR was shown to repress EGFP production. Our data suggest that R. solanacearum features a regulatory mechanism in which expression of genes encoding purine salvage enzymes is controlled by a transcription factor that belongs to a different protein family, yet performs similar regulatory functions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1610-1610
Author(s):  
Paresh Vyas ◽  
Boris Guyot ◽  
Veronica Valverde-Garduno ◽  
Eduardo Anguita ◽  
Isla Hamlett ◽  
...  

Abstract Normal differentiation of red cells, platelets and eosinophils from a myeloid progenitor requires expression of the transcription factor GATA1. Moreover, GATA1 expression level influences lineage output; higher levels promote erythromegakaryocytic differentiation and lower levels eosinophil maturation. Conversely, repression of GATA1 expression is required for monocyte/neutrophil development. GATA1 expression is principally controlled transcriptionally. Thus, dissecting the molecular basis of transcriptional control of GATA1 expression will be one important facet in understanding how myeloid lineages are specified. To address this question we sought to identify all DNA sequences important for GATA1 expression. Previous analysis identified 3 murine (m)Gata1 cis-elements (an upstream enhancer, mHS-3.5, a haematopoietic IE promoter and elements in a GATA1 intron, mHS+3.5) conserved in sequence between human(h) and mouse. These studies also suggested additional unidentified elements were required for erythroid and eosinophil GATA1 expression. We compared sequence, mapped DNase I hypersensitive sites (HS) and determined histone H3/H4 acetylation over ~120 kb flanking the hGATA1 locus and corresponding region in mouse to pinpoint cis-elements. Remarkably, despite lying in a ~10 MB conserved syntenic segment, the chromatin structures of both GATA1 loci are strikingly different. Two previously unidentified haematopoietic cis-elements, one in each species (mHS-25 and hHS+14), are not conserved in position and sequence and have enhancer activity in erythroid cells. Chromatin immunoprecipitation studies show both mHS-25 and hHS+14 are bound in vivo in red cells by the transcription factors GATA1, SCL, LMO2, Ldb1. These findings suggest that some cis-elements regulating human and mouse GATA1 genes differ. Further analysis of in vivo transcription factor occupancy at GATA1 cis-elements in primary mouse eosinophils and red cells, megakaryocytic cells (L8057) and control fibroblasts show lineage- and cis-element-specific patterns of regulator binding (see table below). In red cells and megakaryocytes, GATA1, SCL, LMO2 and Ldb1 bind at two regulatory elements (mhHS-25 and mHS-3.5). Interestingly, the megakaryocyte transcriptional regulator Fli1 factor binds to mHS+3.5 specifically in megakaryocytes. In eosinophils, a different pattern of DNase I HS and transcription factor binding is seen. GATA1, PU.1 and C/EBPe (all regulate eosinophil gene expression) bind IE promoter and/or mHS+3.5. Collectively, these results suggest lineage-specific GATA1 expession is dependent on combinations of cis-elements and haematopoietic trans-acting factors that are unique for each lineage. DNase I Hypersensitive sites and transcription factor occupancy at mGATA1 cis-elements. mHS-26/-25* mHS-3.5 mIE mHS+3.5 m: mouse, h: human, *: HS identified in this study, TF: transcription factor Primary erythroid cells HS present, GATA1, SCL, LMO2, Ldb1 HS present, GATA1, SCL, LMO2, Ldb1 HS present, GATA1 HS present, GATA1 Megakaryocytic cells HS present, GATA1, SCL, LMO2, Ldb1 HS present, GATA1, SCL, LMO2, Ldb1 HS present, GATA1 HS present, GATA1 and Fli1 Primary eosinophils HS absent HS present, No TF detected HS present, GATA1 and C/EBPε HS present, GATA1, C/EBP ε and PU.1 Fibroblasts HS absent HS absent HS absent HS absent


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4214-4214
Author(s):  
Richard Dahl ◽  
Kristin S. Owens

Abstract Gfi-1 −/− mice generate abnormal immature myeloid cells exhibiting characteristics of both monocytes and granulocytes. One of Gfi-1’s critical functions is to downregulate monocyte specific genes in order for granulocytes to develop properly. Since the transcription factors C/EBP alpha and C/EBP epsilon are needed for granulocyte development we hypothesized that these factors may regulate Gfi-1 expression. The Gfi-1 promoter contains several putative C/EBP binding sites and we show by electrophoretic mobility shift and chromatin immunoprecipitation that C/EBP family members can bind to some of these sites. However we were unable to see activation of the Gfi-1 promoter by C/EBP proteins in transient transfection reporter assays. Other groups have shown that C/EBP proteins can synergize with the transcription factor c-myb. We observed that the Gfi-1 promoter contains sites for the hematopoietic transcription factor c-myb. Sevral of these c-myb binding sites are adjacent to C/EBP binding sites. In reporter assays in non-hematopoietic cells c-myb activated the Gfi-1 promoter by itself and this activity was enhanced when we included either C/EBP alpha or epsilon in the transfection. Our data suggests that C/EBP proteins and c-myb regulate the transcription of Gfi-1 in myeloid cells.


2002 ◽  
Vol 361 (3) ◽  
pp. 629-633 ◽  
Author(s):  
Makoto NISHIZUKA ◽  
Tomoko TSUCHIYA ◽  
Tsutomu NISHIHARA ◽  
Masayoshi IMAGAWA

Using a subtraction method, we have isolated genes that are induced early in the differentiation of mouse 3T3-L1 preadipocyte cells into adipocytes. These include the genes encoding transcription factors and signalling proteins, as well as unknown genes. Bach1, a transcription factor, and ARA70, a cofactor, were rapidly induced during differentiation. The induction of these two genes was observed only in growth-arrested 3T3-L1 cells, and not in proliferating cells. In NIH-3T3 cells, no induction was observed under either set of conditions. These results strongly indicate that Bach1 and ARA70 have valuable roles at the onset of adipocyte differentiation.


2003 ◽  
Vol 185 (13) ◽  
pp. 3926-3934 ◽  
Author(s):  
Gabriella Fiorentino ◽  
Raffaele Cannio ◽  
Mosè Rossi ◽  
Simonetta Bartolucci

ABSTRACT A transcriptionally active region has been identified in the 5′ flanking region of the alcohol dehydrogenase gene of the crenarchaeon Sulfolobus solfataricus through the evaluation of the activity of putative transcriptional regulators and the role of the region upstream of the gene under specific metabolic circumstances. Electrophoretic mobility shift assays with crude extracts revealed protein complexes that most likely contain TATA box-associated factors. When the TATA element was deleted from the region, binding sites for both DNA binding proteins, such as the small chromatin structure-modeling Sso7d and Sso10b (Alba), and transcription factors, such as the repressor Lrs14, were revealed. To understand the molecular mechanisms underlying the substrate-induced expression of the adh gene, the promoter was analyzed for the presence of cis-acting elements recognized by specific transcription factors upon exposure of the cell to benzaldehyde. Progressive dissection of the identified promoter region restricted the analysis to a minimal responsive element (PAL) located immediately upstream of the transcription factor B-responsive element-TATA element, resembling typical bacterial regulatory sequences. A benzaldehyde-activated transcription factor (Bald) that specifically binds to the PAL cis-acting element was also identified. This protein was purified from heparin-fractionated extracts of benzaldehyde-induced cells and was shown to have a molecular mass of ∼16 kDa. The correlation between S. solfataricus adh gene activation and benzaldehyde-inducible occupation of a specific DNA sequence in its promoter suggests that a molecular signaling mechanism is responsible for the switch of the aromatic aldehyde metabolism as a response to environmental changes.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinsen Cai ◽  
Weiwei Cai ◽  
Xueying Huang ◽  
Sheng Yang ◽  
Jiayu Wen ◽  
...  

Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.


Sign in / Sign up

Export Citation Format

Share Document