scholarly journals Arctic-Boreal Lake Phenology Shows a Relationship between Earlier Lake Ice-Out and Later Green-Up

2021 ◽  
Vol 13 (13) ◽  
pp. 2533
Author(s):  
Catherine Kuhn ◽  
Aji John ◽  
Janneke Hille Ris Lambers ◽  
David Butman ◽  
Amanda Tan

Satellite remote sensing has transformed our understanding of Earth processes. One component of the Earth system where large uncertainties remain are Arctic and boreal freshwater lakes. With only short periods of open water due to annual ice cover, lake productivity in these regions is extremely sensitive to warming induced changes in ice cover. At the same time, productivity dynamics in these lakes vary enormously, even over short distances, making it difficult to understand these potential changes. A major impediment to an improved understanding of lake dynamics has been sparsely distributed field measurements, in large part due to the complexity and expense of conducting scientific research in remote northern latitudes. This project overcomes that hurdle by using a new set of ‘eyes in the sky’, the Planet Labs CubeSat fleet, to observe 35 lakes across 3 different arctic-boreal ecoregions in western North America. We extract time series of lake reflectance to identify ice-out and green-up across three years (2017–2019). We find that lakes with later ice-out have significantly faster green-ups. Our results also show ice-out varies latitudinally by 38 days from south to north, but only varies across years by ~9 days. In contrast, green-up varied between years by 22 days in addition to showing significant spatial variability. We compare PlanetScope to Sentinel-2 data and independently validate our ice-out estimates, finding an ice-out mean absolute difference (MAD) ~9 days. This study demonstrates the potential of using CubeSat imagery to monitor the timing and magnitude of ice-off and green-up at high spatiotemporal resolution.

2011 ◽  
Vol 8 (5) ◽  
pp. 9639-9669 ◽  
Author(s):  
T. Boereboom ◽  
M. Depoorter ◽  
S. Coppens ◽  
J.-L. Tison

Abstract. This paper describes gas composition, total gas content and bubbles characteristics in winter lake ice for four adjacent lakes in a discontinuous permafrost area. Our gas mixing ratios suggest that gas exchange occurs between the bubbles and the water before entrapment in the ice. Comparison between lakes enabled us to identify 2 major "bubbling events" shown to be related to a regional drop of atmospheric pressure. Further comparison demonstrates that winter lake gas content is strongly dependent on hydrological connections: according to their closed/open status with regards to water exchange, lakes build up more or less greenhouse gases (GHG) in their water and ice cover during the winter, and release it during spring melt. These discrepancies between lakes need to be taken into account when establishing a budget for permafrost regions. Our analysis allows us to present a new classification of bubbles, according to their gas properties. Our methane emission budget (from 6.52 10−5 to 12.7 mg CH4 m−2 d−1) for the three months of winter ice cover is complementary to the other budget estimates, taking into account the variability of the gas distribution in the ice and between the various types of lakes. Most available studies on boreal lakes have focused on quantifying GHG emissions from sediment by means of various systems collecting gases at the lake surface, and this mainly during the summer "open water" period. Only few of these have looked at the gas enclosed in the winter ice-cover itself. Our approach enables us to integrate, for the first time, the history of winter gas emission for this type of lakes.


Author(s):  
Kelly A Loria ◽  
Kyle R Christianson ◽  
Pieter T J Johnson

Abstract The prolonged ice cover inherent to alpine lakes incurs unique challenges for aquatic life, which are compounded by recent shifts in the timing and duration of ice cover. To understand the responses of alpine zooplankton, we analyzed a decade (2009–2019) of open-water samples of Daphnia pulicaria and Hesperodiaptomus shoshone for growth, reproduction and ultraviolet radiation tolerance. Due to reproductive differences between taxa, we expected clonal cladocerans to exhibit a more rapid response to ice-cover changes relative to copepods dependent on sexual reproduction. For D. pulicaria, biomass and melanization were lowest after ice clearance and increased through summer, whereas fecundity was highest shortly after ice-off. For H. shoshone, biomass and fecundity peaked later but were generally less variable through time. Among years, ice clearance date varied by 49 days; years with earlier ice-out and a longer growing season supported higher D. pulicaria biomass and clutch sizes along with greater H. shoshone fecundity. While these large-bodied, stress tolerant zooplankton taxa were relatively resilient to phenological shifts during the observation period, continued losses of ice cover may create unfavorably warm conditions and facilitate invasion by montane species, emphasizing the value of long-term data in assessing future changes to these sensitive ecosystems.


2010 ◽  
Vol 51 (56) ◽  
pp. 56-70 ◽  
Author(s):  
Julie Veillette ◽  
Marie-Josée Martineau ◽  
Dermot Antoniades ◽  
Denis Sarrazin ◽  
Warwick F. Vincent

AbstractPerennially ice-covered lakes are well known from Antarctica and also occur in the extreme High Arctic. Climate change has many implications for these lakes, including the thinning and disappearance of their perennial ice cover. The goal of this study was to consider the effects of transition to seasonal ice cover by way of limnological observations on a series of meromictic lakes along the northern coastline of Ellesmere Island, Nunavut, Canada. Conductivity-temperature profiles during a rare period of ice-free conditions (August 2008) in these lakes suggested effects of wind-induced mixing of their surface freshwater layers and the onset of entrainment of water at the halocline. Sampling of the mixed layer of one of these meromictic lakes in May and August 2008 revealed a pronounced vertical structure in phytoplankton pigments and species composition, with dominance by cyanobacteria, green algae, chrysophytes, cryptophytes and dinoflagellates, and a conspicuous absence of diatoms. The loss of ice cover resulted in an 80-fold increase in water column irradiance and apparent mixing of the upper water column during a period of higher wind speeds. Zeaxanthin, a pigment found in cyanobacteria, was entirely restricted to the <3μm cell fraction at all depths and increased by a factor of 2–17, with the greatest increases in the upper halocline region subject to mixing. Consistent with the pigment data, picocyanobacterial populations increased by a factor of 3, with the highest concentration (1.65 × 108 cells L−1) in the upper halocline. Chlorophyll a concentrations and the relative importance of phytoplankton groups differed among the four lakes during the open-water period, implying lake-specific differences in phytoplankton community structure under ice-free conditions.


2020 ◽  
Author(s):  
Alexis L. Robinson ◽  
Sarah S. Ariano ◽  
Laura C. Brown

Abstract. Lake ice models can be used to study the latitudinal differences of current and projected changes in ice covered lakes under a changing climate. The Canadian Lake Ice Model (CLIMo) is a one-dimensional freshwater ice cover model that simulates Arctic and sub-Arctic lake ice cover well. Modelling ice cover in temperate regions has presented challenges due to the differences in composition between northern and temperate ice. This study presents a comparison of measured and modelled ice regimes, with a focus on refining CLIMo for temperate regions. The study sites include two temperate region lakes (MacDonald Lake and Clear Lake, Central Ontario) and two High Arctic lakes (Resolute Lake and Small Lake, Nunavut) where climate and ice cover information have been recorded over three seasons. The ice cover simulations were validated with a combination of time lapse imagery, field measurements of snow depth, snow density, ice thickness and albedo data, and historical ice records from the Canadian Ice Database (for Resolute Lake). Simulations of the High Arctic ice cover show good agreement with previous studies for ice-on and ice-off dates (MAE 6 to 8 days). Unadjusted simulations for the temperate region lakes show both an underestimation in ice thickness (~ 4 to 18 cm) and ice-off timing (~ 25 to 30 days). Field measurements were used to adjust the albedo parameterization used in CLIMo, which resulted in improvements to both simulated ice thickness, within 0.1 cm to 10 cm of manual measurements, and ice-off timing, within 1 to 7 days of observations. These findings suggest regionally specific measurements of albedo can improve the accuracy of lake ice simulations. These results further our knowledge regarding of the response of temperate and High Arctic lake ice regimes to climate conditions.


2021 ◽  
Vol 15 (10) ◽  
pp. 4781-4805
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components and their response to climate forcing are interconnected. In this work, we examine recent changes in sea ice, lake ice, and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends toward earlier open water (−7.7 d per decade, p<0.05) and later final freeze (10.6 d per decade, p<0.05) are evident. Trends toward earlier first snow-off (−4.9 d per decade, p<0.05), combined with trends toward earlier first snow-on (−2.8 d per decade, p<0.05), lead to almost no change in the length of the snow-free season, despite shifting earlier in the year. Sea ice-off, lake ice-off, and snow-off parameters were significantly correlated, with stronger correlations during the snow-off and ice-off season compared to the snow-on and ice-on season. Regionally, the Bering and Chukchi seas show the most pronounced response to warming, with the strongest trends identified toward earlier ice-off and later ice-on. This is consistent with earlier snow-off and lake ice-off and later snow-on and lake ice-on in west and southwest Alaska. In contrast to this, significant clustering between sea ice, lake ice, and snow-on trends in the eastern portion of the North American Arctic shows an earlier return of snow and ice. The marked regional variability in snow and ice phenology across the pan-Arctic highlights the complex relationships between snow and ice, as well as their response to climatic change, and warrants detailed monitoring to understand how different regions of the Arctic are responding to ongoing changes.


2012 ◽  
Vol 9 (2) ◽  
pp. 827-838 ◽  
Author(s):  
T. Boereboom ◽  
M. Depoorter ◽  
S. Coppens ◽  
J.-L. Tison

Abstract. This paper describes gas composition, total gas content and bubbles characteristics in winter lake ice for four adjacent lakes in a discontinuous permafrost area. Our gas mixing ratios for O2, N2, CO2, and CH4 suggest that gas exchange occurs between the bubbles and the water before entrapment in the ice. Comparison between lakes enabled us to identify 2 major "bubbling events" shown to be related to a regional drop of atmospheric pressure. Further comparison demonstrates that winter lake gas content is strongly dependent on hydrological connections: according to their closed/open status with regards to water exchange, lakes build up more or less greenhouse gases (GHG) in their water and ice cover during the winter, and release it during spring melt. These discrepancies between lakes need to be taken into account when establishing a budget for permafrost regions. Our analysis allows us to present a new classification of bubbles, according to their gas properties. Our methane emission budgets (from 6.52 10−5 to 12.7 mg CH4 m−2 d−1 at 4 different lakes) for the three months of winter ice cover is complementary to other budget estimates, as our approach encompasses inter- and intra-lake variability. Most available studies on boreal lakes have focused on quantifying GHG emissions from sediment by means of various systems collecting gases at the lake surface, and this mainly during the summer "open water" period. Only few of these have looked at the gas enclosed in the winter ice-cover itself. Our approach enables us to integrate, for the first time, the history of winter gas emission for this type of lakes.


2021 ◽  
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components, and their response to climate forcing, are interconnected. In this work, we examine recent changes in sea ice, lake ice and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends towards earlier open water (−7.7 d decade−1, p 


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Alexis L. Robinson ◽  
Sarah S. Ariano ◽  
Laura C. Brown

Lake ice models are a vital tool for studying the response of ice-covered lakes to changing climates throughout the world. The Canadian Lake Ice Model (CLIMo) is a one-dimensional freshwater ice cover model that simulates Arctic and sub-Arctic lake ice cover well. Modelling ice cover in temperate regions has presented challenges due to the differences in ice composition between northern and temperate region lake ice. This study presents a comparison of measured and modelled ice regimes, with a focus on refining CLIMo for temperate regions. The study sites include two temperate region lakes (MacDonald Lake and Clear Lake, Central Ontario) and two High Arctic lakes (Resolute Lake and Small Lake, Nunavut) where climate and ice cover information have been recorded over three seasons. The ice cover simulations were validated with a combination of time lapse imagery, field measurements of snow depth, snow density, ice thickness and albedo data, and historical ice records from the Canadian Ice Database (for Resolute Lake). Simulations of High Arctic lake ice cover show good agreement with previous studies for ice-on and ice-off dates (MAE 6 to 8 days). Unadjusted simulations for the temperate region lakes show good ice-on timing, but an under-representation of ice thickness, and earlier complete ice-off timing (~3 to 5 weeks). Field measurements were used to adjust the albedo values used in CLIMo, which resulted in improvements to both simulated ice thickness (~3 cm MAE compared to manual measurements), and ice-off timing, within 0 to 7 days (2 days MAE) of observations. These findings suggest regionally specific measurements of albedo can improve the accuracy of lake ice simulations, which further our knowledge of the response of temperate and High Arctic lake ice regimes to climate conditions.


2015 ◽  
Vol 61 (230) ◽  
pp. 1207-1212 ◽  
Author(s):  
Iwona Kurzyca ◽  
Adam Choiński ◽  
Joanna Pociask-Karteczka ◽  
Agnieszka Lawniczak ◽  
Marcin Frankowski

AbstractWe discuss the results of an investigation of the chemical composition of the ice cover on the high-mountain lake Morskie Oko in the Tatra Mountains, Carpathians, Poland. In the years 2007–13, the ice cover was characterized by an average duration of 6 months, a thickness range of 0.40–1.14 m, and a multilayered structure with water or slush inclusion. In water from the melted ice cover, chloride (max. 69%) and sulphate (max. 51%) anions and ammonium (max. 66%) and calcium (max. 78%) cations predominated. Different concentrations of ions (F−, Cl−, NO3−, SO42−, Na+, K+, Mg2+, Ca2+, NH4+) in the upper, middle and bottom layers of ice were observed, along with long-term variability and spatial diversification within the ice layer over the lake. Snowpack lying on the ice and the water body under the ice were also investigated, and the influence on the ice cover of certain ions in elevated concentrations was observed (e.g. Cl− in the upper ice cover and the snowpack, and Ca2+ in the bottom ice cover and water body).


2018 ◽  
Vol 12 (8) ◽  
pp. 2727-2740 ◽  
Author(s):  
Vasiliy Tikhonov ◽  
Ilya Khvostov ◽  
Andrey Romanov ◽  
Evgeniy Sharkov

Abstract. The paper presents a theoretical analysis of seasonal brightness temperature variations at a number of large freshwater lakes: Baikal, Ladoga, Great Bear Lake (GBL), Great Slave Lake (GSL), and Huron, retrieved from Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) data (1.4 GHz) of the Soil Moisture and Ocean Salinity (SMOS) satellite. The analysis was performed using the model of microwave radiation of plane layered heterogeneous nonisothermal medium. The input parameters for the model were real regional climatological characteristics and glaciological parameters of ice cover of the study lakes. Three distinct seasonal brightness temperature time regions corresponding to different phenological phases of the lake surfaces: complete ice cover, ice melt and deterioration, and open water were revealed. The paper demonstrates the possibility to determine the beginning of ice cover deterioration from satellite microwave radiometry data. The obtained results can be useful for setting the operating terms of winter crossings and roads on ice, as with the beginning of ice deterioration, these transportation routes across water bodies (rivers, lakes, water reservoirs) become insecure and cannot be used any more.


Sign in / Sign up

Export Citation Format

Share Document