Micro-RNA Regulation on Oct4 Gene Expression and Functional Differentiation in Skin Cancer Cells

2021 ◽  
Vol 11 (11) ◽  
pp. 2210-2215
Author(s):  
Yuan Li ◽  
Yongjiang Dai ◽  
Shun Bai ◽  
Bin Yang

Micro-RNA has a very important role in gene regulation. The stem gene Oct4 is related with the growth, mobility, and infiltration of skin cancer cells. Studying the regulatory mechanism of micro-RNAs of Oct4 in skin cancer cells is of important clinical significance. Oct4 gene was analyzed using bioinformatics methods to find mir-RNA with regulatory functions. mir-RNA high-expression vector and suppression vector with pcDNA3.1-EGFP was transfected to skin cancer cell line HS-4 followed analysis of Oct4 expression 24 h and 48 h after transfection and transwell in-vitro cell invasion assay. Bioinformatics showed that mir-335 has relationship with the Oct4 gene. pcDNA3.1-EGFP-335-up and pcDNA3.1-EGFP-335-down were successfully constructed. 24 and 48 hours after transfection, the Oct4 expression in the high-expression group was gradually and significantly decreased (P < 0.05). Meanwhile, the cell migration and infiltration capacity was decreased significantly and showed time dependence with significant differences between groups (P < 0.05). mir-335 expression in suppression group was reduced without change of Oct4 (P > 0.05). Increased mir-335 can decrease the performance of Oct4 in skin cancer cells and inhibit the infiltration ability of cells without affecting cell infiltration capability.

2021 ◽  
Author(s):  
Sajjad Eslamkhah ◽  
Nazila Alizadeh ◽  
Sahar Safaei ◽  
Mohammad Amini ◽  
ahad Mokhtarzadeh ◽  
...  

Abstract Aim: Breast cancer (BC) has been classified among the main causes of death owing to females' cancer. Carboplatin is a platinum-based chemotherapeutic drug that is an important treatment option for BC. But high and frequent doses of carboplatin usually reducing the reaction of cancer cells to medication. There is an immediate need to establish methods for increasing the carboplatin susceptibility to BC cells. For instance, micro RNAs (miRNAs) such as MiR34a demonstrate significant potential. Considering that, this research was planned to explore the better clinical effect and underlying mechanism of miR-34a as a possible tumor inhibitor and drug resistance regulator in compound with carboplatin chemotherapy drug in the cell lines of BC in humans. Methods: MCF-7 cell line was transfected with miR-34a to perform functional analyses. Subsequently, the MTT assay was applied to assess cell viability. Cell viability and cell death associated gene expression amounts including Bax, Bcl-2, caspase-3, MDR1, P53, and mir34-a, were examined through real-time quantitative PCR. Results: Findings showed that miR-34a upregulation significantly decreased MCF7 cell viability in comparison with control group. Furthermore, separate treatment of cells with miR-34a mimics and carboplatin could significantly increase Bax, Caspase-3, P53, and decrease in Bcl-2 mRNA expression levels evaluated to the non-treated group. Moreover, by reduction in expression levels of the MDR1 gene, BC cells' reaction to carboplatin has increased via miR-34a. Conclusion: In line with the findings, it could be inferred that miR-34a may improve the responsiveness of breast cancer cells to carboplatin chemotherapy with downregulation of MDR1.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


2021 ◽  
Vol 12 (6) ◽  
pp. 8094-8104

A series of novel thiazolidinone-isatin hybrids have been synthesized through the Knoevenagel reaction of isatin derivatives with synthesized thiazolidinone scaffolds and then evaluated for their in vitro antibacterial effects on Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Cytotoxic effects of the compounds on non-small-cell lung cancer cells (A549 cells), breast epithelial cancer cell line (MCF-7), and prostate cancer cells (PC3 cells) were investigated. Among compounds tested for antibacterial activity, S. aureus was susceptible to compound 7d. The most potent compounds against A549, MCF-7, and PC3 tumor cells were found to be 7g. DAPI staining of all cancer cell lines treated with compound 7g, associated with cell death. We finally confirmed that apoptosis occurred in A549 cells by up-regulated Bax expression and down-regulated Bcl-2 expression from the mitochondrial pathway of apoptosis by using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. Our findings suggested that compound 7g may be a good target in designing cancer therapy strategies.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Rihab E Hamed-Berair ◽  
Srinivas D Sithu ◽  
Nalinie Wickramasinghe ◽  
Jasmit Shah ◽  
Abhinav Agawral ◽  
...  

Micro RNAs (miR) are short non-coding RNAs that regulate several genes under pathophysiological conditions. Accumulating evidence suggest the involvement of miR in atherogenesis. However, limited information is available about atherogenic miR and the underling mechanisms by which miR affect atherogenesis. Our data shows that 12 weeks of western diet (WD) in LDL receptor-knockout (LDLR-KO) mice upregulated 99 and downregulated 50 miR in the aorta. Among the 41 differentially expressed miR associated with macrophage inflammation and apoptosis, expression of micro RNA-21 (miR-21) was increased by 1.4-fold (P<0.05). WD also increased the expression of miR-21 by 1.5-fold in bone marrow derived macrophages (BMDM). In vitro , LDL, oxidized LDL, acetylated LDL and LPS induced miR-21 by 2-3-fold (P<0.05) and down regulated its target protein PDCD4 in BMDM. Basally, miR-21 deficient BMDM showed increased secretion of IL-6, IL-9 and CXCL-2,-3,-4, and -10 (P<0.05)); and increased early and late apoptosis (2-3-fold, P<0.05). We also observed 40% decrease in the survival of F4/80+ cells during differentiation of bone marrow derived cells isolated from miR-21-KO mice. Stimulation of miR-21-KO BMDM with LPS significantly increased the activation of NF-κB and enhanced the secretion of several pro-inflammatory cytokines including TNFα, IL-6, IL-12 and CXCL-2 (2-10 fold; P<0.05); interferon gamma+LPS polarized the macrophages to pro-inflammatory M1 phenotype (increased expression of CD11c and CD86). Staurosporin and oxidized lipids derived aldehyde 4-hydroxynonenal significantly increased both early and late apoptosis of miR-21-KO BMDM (2-4-fold, P<0.05). This was accompanied by increased cleavage of caspase -3, -7 and -9. Transplantation of bone marrow cells from miR-21-KO into LDLR-KO mice, followed by 12 weeks of WD increased the lesion formation (1.7-fold, P<0.05), apoptosis (3-fold, P<0.05) and necrosis (1.6-fold, P<0.05) in the aortic valve of the chimeric mice. Collectively, these data suggest that miR-21 prevents atherosclerosis, at least in parts, by preventing macrophage apoptosis and inflammation.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kumar Vaibhav ◽  
Shannon Williams ◽  
Sumbul Fatima ◽  
Babak Baban ◽  
Krishnan M Dhandapani ◽  
...  

Background: Micro RNAs (miRNAs) could target multiple mRNAs, repressing the protein translation. We report acute changes in humoral miRNAome in a murine thromboembolic stroke model (eMCAo), and demonstrate the benefits of miRNA therapy in improving cerebral blood flow (CBF). Methods: Non-biased micro RNA (miRNA) array and bioinformatics analysis was performed in plasma collected at 4h post-eMCAo from male mice (C57/B6, 16-weeks). Individual PCR for miRNAs was also performed in brain tissues at 24h post-eMCAo. Moreover, frozen human plasma samples collected at ~4.5h post-stroke were also used for miRNA analysis. Finally, the miRNA mimic that was predicted to target genes of our interest was also tested in vivo and in vitro . Results: Principal component analysis (PCA) of the miRNA-array showed ~68% variance in the humoral miRNAome 4h after eMCAo in mice, and a significant change in Stroke vs. Sham groups (Cut off value >2 fold; p<0.05). Of interest, the hairpin precursor of miR-449b was downregulated (~2.35 fold, p<0.05) at 4h post-eMCAo, while the mature miR-449b was also significantly reduced at 24h post-eMCAo. Mature miR-449b was significantly reduced in human stroke plasma, too. In human brain endothelial cells, miR-449b mimic downregulated gene expressions of both plasminogen activator inhibitor (PAI-1) and alpha 2- antiplasmin (α-AP) only in hypoxia but not during normoxia. Therefore, we finally tested the cholesterol-conjugated miR-449b mimic in the murine eMCAo model. Pre-treatment with miR-449b mimic (8 mg/kg bwt) increased the absolute CBF and reduced edema (as determined by MRI), and also improved the neurological outcomes and reduced % infarct volume (p<0.05). Results: The miR-449b mimic could be a possible therapy to suppress aberrant gene expressions of PAI-1 and α-AP, which will allow more spontaneous reperfusion and benefits from low dose tPA.


Author(s):  
Shahram Ghanaati ◽  
Eva Dohle ◽  
Pasinee Vorakulpipat ◽  
Sarah Al-Maawi ◽  
Rita Schröder ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1968-1968
Author(s):  
Sabine Teichler ◽  
Thomas Illmer ◽  
Thorsten Stiewe ◽  
Josephine Roemhild ◽  
Andreas Neubauer

Abstract Abstract 1968 Poster Board I-991 Introduction: AML patients with deletion of chromosome 7 (−7) or deletion of 7q (−7q) have a poor prognosis. We have found that the nuclear oncogene SKI is overexpressed in AML, especially in AML with −7/−7q. SKI acts in AML as a repressor of retinoic acid induced myeloid differentiation (Ritter et al., (2006) Leukemia). As we found SKI up regulated in AML, we asked how SKI expression may be regulated. The aim of our study was to find a molecular background for increased SKI level. On chromosome 7 is a cluster of micro-RNAs (miRNAs) localized particularly around the fragile site 7q32 (Calin et al., (2003) PNAS). Therefore we investigated whether there exists a link between expression of miRNAs localized on chromosome 7 and up regulation of SKI expression in AML. Methods: We used micro RNA profiling analysis, FACS, Western blot, RQ-PCR and luciferase assays to determine the role of miRNA29a in regulating SKI expression. Results: We found that the expression of miRNA25, miRNA29a, miRNA183 and miRNA335 was downregulated in AML patients with -7/-7q. Transfection studies with these four miRNAs in HL60 cells revealed in FACS that miRNA29a inhibits SKI expression (60,4%) compared to nonsense control (100%) and other miRNAs (miRNA25: 91%, miRNA183: 101%, miRNA335: 93%). Western blot experiments confirmed that miRNA29a reduces SKI level in HL60 cells. In keeping, miRNA29a also represses expression of the SKI target gene Nr-CaM in IFB melanoma cells. Knock down of miRNA29a using miRNA29a inhibitor molecules induces SKI expression in the high miRNA29a and low SKI expressing cell line NW1539. Luciferase assays in NW1539 and HeLa transfected with 3′UTR-constructs and HeLa cells cotransfected with miRNA29a demonstrated that miRNA29a binds to 3′UTR of SKI in vitro. Furthermore, comparison of SKI and miRNA29a expression of AML patient samples indicates that miRNA29a expression is associated with low SKI level in vivo. Conclusion: Our data show that miRNA29a which is located on 7q32 regulates expression of the oncogene SKI in vitro and in vivo. We suggest the deletion of miRNA29a as mechanism for up regulation of SKI in AML with -7/-7q and thus propose that in AML, this effect may contribute to the tumor suppressive function of miRNA29a. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14631-e14631
Author(s):  
T. Xu ◽  
Y. Xu ◽  
R. Lao ◽  
K. He ◽  
L. Xue ◽  
...  

e14631 Background: Telomerase-interference (TI), a novel therapeutic strategy, exploits the high telomerase activity in prostate cancer by introducing a mutated telomerase RNA (MT-Ter) that encodes toxic telomeres. Until now, TI has been tested by targeting human telomerase in tumor cells xenografted into immuno-deficient mice, an inadequate model for predicting efficacy and toxicity. We designed and validated 2 new TI gene constructs that specifically target murine telomerase RNA (mTER), enabling the study of TI in preclinical mouse models that are immuno-competent and that develop endogenous prostate tumors. Methods: We designed 2 constructs and cloned them into a lentiviral delivery system: MT-mTER and siRNA against wild type mTer (α-mTer-siRNA). Using a mouse prostate cancer cell line, E4, we tested the 2 constructs for expression (RT-PCR), telomerase activity (TRAP), and biologic activity (53bp1 DNA damage staining, MTS growth assay, TUNEL and caspase apoptosis assays), as well as in vivo efficacy (NOD-SCID allografts). Results: We confirmed MT-mTER expression (∼50-fold) and showed that α-mTer-siRNA specifically depleted WT-mTER (80% reduction) but not MT-mTER when the 2 constructs are co-expressed; thus, the 2 constructs in combination effectively substituted MT-mTer for WT-mTer in the mouse prostate cancer cells. MT-mTER caused mutant telomeric repeats (TTTGGG instead of TTAGGG) to be added to the ends of telomeres, resulting in rapid telomeric uncapping marked by 53bp1 DNA damage foci (an average 7.5 foci/cell vs. 1.4 foci/cell in vector control). This, in turn, led to rapid and significant apoptosis (>90% TUNEL and caspase +) and growth inhibition in vitro (90% reduction by MTS) and in vivo (75% reduction in tumor allograft size). Conclusions: We successfully designed and validated MT-mTer and α-mTer-siRNA, 2 novel gene constructs that specifically target and co-opt murine telomerase activity within mouse prostate cancer cells. These constructs offer a significant advantage, as they can be used to investigate TI in immuno-competent mice that develop prostate cancer, thereby modeling actual human disease and testing TI-based therapies in a much more informative and authentic manner. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document