scholarly journals Cationic Ordering and Its Influence on the Magnetic Properties of Co-Rich Cobalt Ferrite Thin Films Prepared by Reactive Solid Phase Epitaxy on Nb-Doped SrTiO3(001)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Jannis Thien ◽  
Jascha Bahlmann ◽  
Andreas Alexander ◽  
Kevin Ruwisch ◽  
Jari Rodewald ◽  
...  

Here, we present the (element-specific) magnetic properties and cation ordering for ultrathin Co-rich cobalt ferrite films. Two Co-rich CoxFe3−xO4 films with different stoichiometry (x=1.1 and x=1.4) have been formed by reactive solid phase epitaxy due to post-deposition annealing from epitaxial CoO/Fe3O4 bilayers deposited before on Nb-doped SrTiO3(001). The electronic structure, stoichiometry and homogeneity of the cation distribution of the resulting cobalt ferrite films were verified by angle-resolved hard X-ray photoelectron spectroscopy. From X-ray magnetic circular dichroism measurements, the occupancies of the different sublattices were determined using charge-transfer multiplet calculations. For both ferrite films, a partially inverse spinel structure is found with increased amount of Co3+ cations in the low-spin state on octahedral sites for the Co1.4Fe1.6O4 film. These findings concur with the results obtained by superconducting quantum interference device measurements. Further, the latter measurements revealed the presence of an additional soft magnetic phase probably due to cobalt ferrite islands emerging from the surface, as suggested by atomic force microscope measurements.

2013 ◽  
Vol 740-742 ◽  
pp. 121-124 ◽  
Author(s):  
Enrique Escobedo-Cousin ◽  
Konstantin Vassilevski ◽  
Toby Hopf ◽  
Nick G. Wright ◽  
Anthony O’Neill ◽  
...  

Few-layers graphene films (FLG) were grown by local solid phase epitaxy on a semi-insulating 6H-SiC substrate by annealing Ni films deposited on the Si and C-terminated faces of the SiC. The impact of the annealing process on the final quality of the FLG films is studied using Raman spectroscopy. X-ray photoelectron spectroscopy was used to verify the presence of graphene on the sample surface. We also demonstrate that further device fabrication steps such as dielectric deposition can be carried out without compromising the FLG films integrity.


2004 ◽  
Vol 19 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Wei Tao Zheng ◽  
Xin Wang ◽  
Xianggui Kong ◽  
Hongwei Tian ◽  
Shansheng Yu ◽  
...  

Fe–N thin films were deposited on glass substrates by dc magnetron sputtering under various Ar∕N2 discharge conditions. Crystal structures and elemental compositions of the films were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. Magnetic properties of the films were measured using a superconducting quantum interference device magnetometer. Films deposited at different N2∕(Ar+N2) flow ratios were found to have different crystal structures and different nitrogen contents. When the flow ratios were 60%, 50%, and 30%, a nonmagnetic single-phase FeN was formed in the films. At the flow ratio of 10%, two crystal phases of γ′-Fe4N and ε-Fe3N were detected. When the flow ratio reduced to 5%, a mixture of α-Fe, ε-Fe3N, FeN0.056, and α″-Fe16N2 phases was obtained. The value of saturation magnetization for the mixture was found to be larger than that of pure Fe.


2009 ◽  
Vol 79-82 ◽  
pp. 635-638 ◽  
Author(s):  
Xin Wang ◽  
Hui Jia ◽  
Wei Tao Zheng ◽  
Wei Xu ◽  
Bei Hong Long

Fe-Co-N thin films with various Co content were synthesized on Si (111) substrate using facing-target magnetron sputtering by changing sputtering input power on Co target. During deposition, the input power on Fe target was kept at 160 W. The composition, structure, and magnetic properties were examined by X-ray photoelectron spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference device. XRD and TEM investigations showed that at lower input power of 11.2 W on Co target, the phases in the film were -(Fe,Co)4N and Co3N. Increasing sputtering input power, the content of Co in the film increased. At input power of 14 W, film contained -(Fe,Co)8N phase was produced which exhibited higher saturation magnetization (252.85 Am2/kg) and lower value of coercivity (3.66 kAm-1), corresponded to the 12% content of Co in the film.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2495
Author(s):  
Iuliana Spiridon ◽  
Ioan-Andrei Dascalu ◽  
Adina Coroaba ◽  
Irina Apostol ◽  
Mircea Nicolae Palamaru ◽  
...  

The paper presents the synthesis and characterization of new cobalt ferrite-lignin hybrids. The hybrids were obtained through the combustion of cobalt nitrate and ferric nitrate, two kinds of lignin being used as combustion agents. The temperatures of calcination were 500 °C and 900 °C, respectively. The hybrids were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The magnetic properties were also assessed by vibrating sample magnetometer system (VSM). This facile synthesis method made it possible to obtain cobalt ferrite-lignin hybrids with a spinel structure. Their particle sizes and crystallite sizes have increased with an increment in the calcination temperature. A different occupancy of cations at octahedral and tetrahedral sites also occurred upon the increase in temperature. The hybrids comprising organic lignin presented the best magnetic properties.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2379
Author(s):  
Feng Jiang ◽  
Jiawen Song ◽  
Mengqi Dong ◽  
Yinong Wang

The magnetic properties of π-conjugated bis (8-hydroxyquinoline) manganese (Mnq2) crystals are investigated. Rod-shaped Mnq2 crystals are prepared by using the physical vapor deposition method. Field emission scanning electronic microscopy spectra show that the Mnq2 nanorods have perfect plane quadrangular ends. Energy dispersive spectrometer and X-ray photoelectron spectroscopy analysis demonstrates that the powders and nanorods are the same compound with a high purity. X-ray diffraction analysis shows the high crystal quality of the prepared Mnq2 nanorods. The magnetic measurement, using alternating gradient magnetometer and magnetic property measurement system superconducting quantum interference device vibrating sample magnetometer, indicates that the prepared Mnq2 nanorods show a paramagnetic property at room temperature. First-principles density functional theory (DFT) calculations are used to study the electronic structure and magnetic properties of the prepared Mnq2 crystals. DFT calculations show that the magnetic moment of the Mnq2 isolated molecule is 5 μB, which mainly comes from the localized Mn 3d orbital. The energy difference between the antiferromagnetic and ferromagnetic states of the Mnq2 monoclinic cell is only 0.1 meV, which may explain the paramagnetic property observed in the prepared Mnq2 nanorods and also indicates the difficulty of preparing intrinsic ferromagnetic Mnq2 crystals.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Nano Research ◽  
2021 ◽  
Author(s):  
Alevtina Smekhova ◽  
Alexei Kuzmin ◽  
Konrad Siemensmeyer ◽  
Chen Luo ◽  
Kai Chen ◽  
...  

AbstractModern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2.3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


Sign in / Sign up

Export Citation Format

Share Document