scholarly journals Collagen polarization provides a structural memory for the elongation of epithelial anlage

2021 ◽  
Author(s):  
Hiroko Katsuno-Kambe ◽  
Jessica L. Teo ◽  
Robert J. Ju ◽  
James E. Hudson ◽  
Samantha J. Stehbens ◽  
...  

AbstractBranched epithelial networks are fundamental features of many organs in the body. The biogenesis of these networks involves distinct processes where multicellular aggregates elongate and branch. In this report we focus on understanding how the extracellular matrix contributes to the process of elongation. Using mammary epithelial organotypic cultures we found that collagen 1, but not a basement membrane extract, induces the formation of elongated multicellular aggregates. Indeed, isotropic aggregates, used as models of epithelial anlage, broke symmetry and elongated when transplanted into collagen 1 gels; this was accompanied by reorganization of collagen fibrils into bundles that were polarized around the elongating aggregates. By applying external stretch as a cell-independent way to reorganize the ECM gels, we found that collagen polarization itself can induce and guide the direction of aggregate elongation. This critically involves cell proliferation, which is selectively enhanced in the regions of anlage that elongate, and requires β1-integrin and ERK signaling. We propose that collagen polarization promotes anlage elongation by providing a structural memory of the initial axis that is generated when aggregates break symmetry.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hiroko Katsuno-Kambe ◽  
Jessica L Teo ◽  
Robert J Ju ◽  
James Hudson ◽  
Samantha J Stehbens ◽  
...  

Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here we focus on understanding cellular mechanisms for elongation, using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this loco-regional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles which were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the ECM, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry-breaking and elongation. This required b1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating loco-regional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.


Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 40-48
Author(s):  
Ekojono Ekojono ◽  
Al Wegi Herman ◽  
Mentari Mustika

Euthynus is one of the fish that is widely consumed for the enjoyment of the people of Indonesia or abroad, because of its very soft quality, easy to obtain, and contains a lot of essential protein amino acids that are good for the body. This research aims to identify the freshness of the fish purchased based on the eyes and fish gills. The initial process of identifying the freshness of fish uses several methods. Image input process through image object taking using a cell phone camera. The image object is used to determine the value of the RGB image object. RGB color extraction clarifies the value obtained from the image object before proceeding to the next process. Image resize is the process of cutting the image on the desired object part. Image conversion using the HSV method was used to determine the freshness of fish in the gills. The Local Binary Pattern method is used to determine the freshness of the fisheye. The next step is to refine the RGB image into Morphology. The KNN (K-Nearest Neighbor Method) method is used to group objects based on learning data closest to the object. The journal analysis results on the comparison of methods, after 45 trials for each method, found that the Hue Saturation Value method obtained the highest success by 90% and for the texture value obtained 85% success.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 159-169 ◽  
Author(s):  
G. Levi ◽  
B. Gumbiner ◽  
J.P. Thiery

A vast amount of experimental evidence suggests that cell surface molecules involved in cell-to-cell and/or cell-to-substrate interactions participate in the control of basic events in morphogenesis. E-cadherin is a cell adhesion molecule directly implicated in the control of Ca2(+)-dependent interactions between epithelial cells. We report here the patterns of expression of E-cadherin in developmental stages of Xenopus laevis ranging from early embryo to adult using immunofluorescence microscopy. Although its distribution shares some similarities with those of L-CAM in the chicken and E-cadherin/Uvomorulin in the mouse, the distribution of E-cadherin in Xenopus presents several peculiar and unique features. In early stages of Xenopus development, E-cadherin is not expressed. The molecule is first detectable in the ectoderm of late gastrulas (stage 13-13.5 NF). At this time both the external and the sensory layer of the nonneural ectoderm accumulate high levels of E-cadherin while the ectoderm overlying the neural plate and regions of the involuting marginal zone (IMZ) not yet internalized by the movements of gastrulation are E-cadherin-negative. Unlike most other species, endodermal cells express no or very low levels of E-cadherin up to stage 20 NF. Endodermal cells become strongly E-cadherin-positive only when a well-differentiated epithelium forms in the gut. No mesodermal structures are stained during early development. In the placodes, in contrast to other species, E-cadherin disappears very rapidly after placode thickening. During further embryonic development E-cadherin is present in the skin, the gut epithelium, the pancreas, many monostratified epithelia and most glands. Hepatocytes are stained weakly while most other tissues, including the pronephros, are negative. In the mesonephros, the Wolffian duct and some tubules are positive. During metamorphosis a profound restructuring of the body plan takes place under the control of thyroid hormones, which involves the degeneration and subsequent regeneration of several tissues such as the skin and the gut. All newly formed epithelia express high levels of E-cadherin. Surprisingly, degenerating epithelia of both skin and intestine maintain high levels of the protein even after starting to become disorganized and to degenerate. In the adult, staining is strong in the skin, the glands, the lungs, the gut epithelium and the pancreas, weak in the liver and absent from most other tissues. Our results show that the expression of E-cadherin in Xenopus is strongly correlated with the appearance of differentiated epithelia.


2021 ◽  
Vol 19 ◽  
Author(s):  
Ayaz M. Belkozhayev ◽  
Minnatallah Al-Yozbaki ◽  
Alex George ◽  
Raigul Ye Niyazova ◽  
Kamalidin O. Sharipov ◽  
...  

There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington’s disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.


Author(s):  
Amin A. Abdulghani

A lot of interest has been expressed in database mining using association rules (Agrawal, Imielinski, & Swami, 1993). In this chapter, we provide a different view of the association rules, referred to as cubegrades (Imielinski, Khachiyan, & Abdulghani, 2002) . An example of a typical association rule states that, say, 23% of supermarket transactions (so called market basket data) which buy bread and butter buy also cereal (that percentage is called confidence) and that 10% of all transactions buy bread and butter (this is called support). Bread and butter represent the body of the rule and cereal constitutes the consequent of the rule. This statement is typically represented as a probabilistic rule. But association rules can also be viewed as statements about how the cell representing the body of the rule is affected by specializing it by adding an extra constraint expressed by the rule’s consequent. Indeed, the confidence of an association rule can be viewed as the ratio of the support drop, when the cell corresponding to the body of a rule (in our case the cell of transactions buying bread and butter) is augmented with its consequent (in this case cereal). This interpretation gives association rules a “dynamic flavor” reflected in a hypothetical change of support affected by specializing the body cell to a cell whose description is a union of body and consequent descriptors. For example, our earlier association rule can be interpreted as saying that the count of transactions buying bread and butter drops to 23% of the original when restricted (rolled down) to the transactions buying bread, butter and cereal. In other words, this rule states how the count of transactions supporting buyers of bread and butter is affected by buying cereal as well. With such interpretation in mind, a much more general view of association rules can be taken, when support (count) can be replaced by an arbitrary measure or aggregate and the specialization operation can be substituted with a different “delta” operation. Cubegrades capture this generalization. Conceptually, this is very similar to the notion of gradients used in calculus. By definition the gradient of a function between the domain points x1 and x2 measures the ratio of the delta change in the function value over the delta change between the points. For a given point x and function f(), it can be interpreted as a statement of how a change in the value of x (?x), affects a change of value in the function (? f(x)).


2019 ◽  
Vol 34 (6) ◽  
pp. 634-644 ◽  
Author(s):  
Arthur H. Cheng ◽  
Samuel W. Fung ◽  
Hai-Ying Mary Cheng

The principal circadian pacemaker in mammals, the suprachiasmatic nucleus (SCN), expresses a number of neuropeptides that facilitate intercellular synchrony, helping to generate coherent outputs to peripheral clocks throughout the body. In particular, arginine vasopressin (AVP)– and vasoactive intestinal peptide (VIP)–expressing neurons have been recognized as crucial subpopulations within the SCN and have thus been the focus of many chronobiological studies. Here, we analyze the neuropeptide expression of 2 popular transgenic mouse strains commonly used to direct or restrict Cre-mediated recombination to AVP- and VIP-ergic neurons. The Avp-IRES2-Cre (JAX #023530) and Vip-IRES-Cre (JAX #010908) “driver” mouse strains express the Cre recombinase under the control of the endogenous Avp or Vip gene, respectively, allowing scientists either to ablate their gene of interest or to overexpress a transgene in a cell type–specific manner. Although these are potentially very powerful tools for chronobiologists and other scientists studying AVP- and VIP-ergic neurons, we found that neuropeptide expression in these mice is significantly decreased when an IRES(2)-Cre cassette is inserted downstream of the neuropeptide-encoding gene locus. The impact of IRES(2)-Cre cassette insertion on neuropeptide expression may be a confounding factor in many experimental designs. Our findings suggest that extreme caution must be exercised when using these mouse models to avoid misinterpretation of empirical results.


2016 ◽  
Vol 113 (39) ◽  
pp. E5731-E5740 ◽  
Author(s):  
Zuzana Koledova ◽  
Xiaohong Zhang ◽  
Charles Streuli ◽  
Robert B. Clarke ◽  
Ophir D. Klein ◽  
...  

The role of the local microenvironment in influencing cell behavior is central to both normal development and cancer formation. Here, we show that sprouty 1 (SPRY1) modulates the microenvironment to enable proper mammary branching morphogenesis. This process occurs through negative regulation of epidermal growth factor receptor (EGFR) signaling in mammary stroma. Loss of SPRY1 resulted in up-regulation of EGFR–extracellular signal–regulated kinase (ERK) signaling in response to amphiregulin and transforming growth factor alpha stimulation. Consequently, stromal paracrine signaling and ECM remodeling is augmented, leading to increased epithelial branching in the mutant gland. By contrast, down-regulation of EGFR–ERK signaling due to gain of Sprouty function in the stroma led to stunted epithelial branching. Taken together, our results show that modulation of stromal paracrine signaling and ECM remodeling by SPRY1 regulates mammary epithelial morphogenesis during postnatal development.


Sign in / Sign up

Export Citation Format

Share Document