Comparing the Mechanical and Thermal Properties of PLA/Organosolv Lignin Biocomposites Made of Different Biomass for 3D Printing Applications

Author(s):  
John Obielodan ◽  
Maia Delwiche ◽  
Dan Clark ◽  
Cassie Downing ◽  
Delanie Huntoon ◽  
...  

Abstract This work investigates the differences in mechanical and thermal properties of polylactic acid (PLA)/lignin biocomposites made of four different unmodified organosolv lignin materials, three of which were extracted from different woody biomass (maple, oak, and pine) in-house, and one sourced commercially. Filaments made from blends of 30wt% and 40wt% of the in-house lignin and the commercially sourced lignin as fillers in PLA were used to 3D-print experimental test samples using fused filament fabrication (FFF) process. Statistically significant differences were observed in the mechanical properties based on tension testing and Izod impact testing, while differences in thermal properties based on differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis were less significant. Test samples with 30wt% lignin had tensile strengths that were higher than those of 40wt% lignin. Among the three in-house extracted lignin from the woody biomass resources, maple-based composites consistently yielded the highest tensile strengths while oak-based materials yielded the highest stiffness in tension testing and the most stability in impact resistance. The pine-based materials showed the most decline in strengths between 30wt% and 40wt% lignin loadings. The commercially obtained lignin at 30wt% and pine-based lignin at 40wt% yielded much higher percent elongations at failure than all other materials. This study demonstrates the influence of lignin biomass resources and their concentrations on the properties and performances of 3D printed specimens.

2013 ◽  
Vol 812 ◽  
pp. 163-168 ◽  
Author(s):  
Mohd Redzuan Aein Afina ◽  
Bonnia Noor Najmi ◽  
Shuhaimen Siti Shakirah ◽  
Siti Norasmah Surip

The influences of Carbon Black (CB) as filler for rubber toughened polyester composite on thermal properties were investigated, in consideration for applications such as automotive parts and integrated circuits (IC) encapsulations. The usage of CB as filler is one of the efforts in increasing and varying the use of rubber and unsaturated polyester thermoset in composite materials. Unsaturated polyester was mixed with 3% liquid natural rubber (LNR) as toughening agent and CB, which were varied from 0, 2, 4, 6, 8, and 10% using mechanical stirrer and moulded by using the open mould technique. Impact testing was conducted for mechanical property and it was found that the addition of CB increased the impact strength by 87%. Thermal properties of the composites were evaluated using a thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The TGA curves of the composites were quite similar, but there were slight increment in thermal stability for several CB filled composites compared to the neat polyester matrix. DSC analysis showed that all the composites were fully cured, and CB filled composites had a slower heat flow rate compared to the neat rubber toughened composite.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 866 ◽  
Author(s):  
Alexandre L. Pereira ◽  
Mariana D. Banea ◽  
Jorge S.S. Neto ◽  
Daniel K.K. Cavalcanti

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.


2017 ◽  
Vol 15 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Pablo Ross ◽  
Germán Escobar ◽  
Guillermo Sevilla ◽  
Javier Quagliano

AbstractMicro and nanocomposites of hydroxyl terminated polybutadiene (HTPB)-based polyurethanes (NPU) were obtained using five mineral fillers and Cloisite 20A nanoclay, respectively. Samples were prepared by the reaction of HTPB polyol and toluene diisocyanate (TDI), and the chain was further extended with glyceryl monoricinoleate to produce the final elastomeric polyurethanes. Mechanical and thermal properties were studied, showing that mineral fillers (20%w/w) significantly increased tensile strength, in particular nanoclay (at 5% w/w). When nanoclay-polymer dispersion was modified with a silane and hydantoin-bond promoter, elongation at break was significantly increased with respect to NPU with C20A. Thermal properties measured by differential scanning calorimetry (DSC) were not significantly affected in any case. The molecular structure of prepared micro and nanocomposites was confirmed by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. Interaction of fillers with polymer chains is discussed, considering the role of silanes in compatibilization of hydrophilic mineral fillers and hydrophobic polymer. The functionalization of nanoclay with HMDS silane was confirmed using FTIR. Microstructure of NPU with C20A nanoclay was confirmed by Atomic Force Microscopy (AFM).


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Linda Salminen ◽  
Erno Karjalainen ◽  
Vladimir Aseyev ◽  
Heikki Tenhu

This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers—tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)—was studied. The materials’ mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.


2020 ◽  
pp. 095400832094392
Author(s):  
Xiangmin Xu ◽  
Beibei Tong ◽  
Xiaoyan Zhang ◽  
Yudong Zhang ◽  
Binjie Li

Constructing a hierarchical structure of nanomaterials on the surface of reinforcing fibers is the best strategy to obtain other desired functions while improving the mechanical properties of polymers. In this article, acid-treated multiwall carbon nanotubes (MWCNTs) were introduced to the surface of milled glass fiber (MGF) under the combined action of tetraethyl orthosilicate and 3-aminopropyltriethyloxysilane to prepare a hierarchical fiber (MWCNTs-GF). The surface morphology and microstructure of this hierarchical fiber were characterized by field-emission scanning electron microscope and transmission electron microscope, and a composite coating with MWCNTs as the main component was observed on each fiber surface. Fourier transform infrared and Raman spectroscopy revealed the presence of the specific interactions between MWCNTs and MGF. Polyamide 66 (PA66) composites with different content of MWCNTs-GF were fabricated by melt blending. The resulting composites exhibited improved mechanical properties relative to pure PA66, in which the tensile strength and notched impact strength of the composite filled with 3 wt% MWCNTs-GF increased by 23.3% and 69.0%, respectively. Subsequently, by analyzing fracture morphology and interfacial adhesion of the composites, the strengthening and toughening mechanisms of MWCNTs-GF were elaborated in detail. In addition, the results of thermogravimetric analysis and differential scanning calorimetry showed that MWCNTs-GF possessed strong heterogeneous nucleation ability, and its addition could refine the grain size of PA66 and significantly increase the crystallization temperature and thermal stability of the corresponding composites. Compared to PA66 composites reinforced with neat MGF, it was found that the unique surface structure of MWCNTs-GF was likely responsible for improved thermal properties of this hierarchical fiber-reinforced PA66 composites.


2021 ◽  
Vol 877 ◽  
pp. 67-72
Author(s):  
Niño B. Felices ◽  
Bryan B. Pajarito

Epoxysilane-treated muscovite (ETM) was used as reinforcing filler to 3D-printed acrylonitrile butadiene styrene (ABS) via fused deposition modeling (FDM). Its effects to the mechanical and thermal properties of ABS were investigated. ETM was loaded at 1, 3, and 5wt%. ABS/ETM composites were characterized via scanning electron microscopy (SEM), tensile test, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical reinforcement of ABS was observed for ABS/ETM composites loaded at 1 and 3 wt% wherein it was noted that the tensile strength and elastic modulus increased by up to 83.6% and 76.6%, respectively. Reinforcement was brought by interfacial adhesion of ETM with the ABS matrix. There was a sharp decline in mechanical properties for ABS/ETM composites loaded at 5wt% due to agglomeration of ETM in the matrix and discontinuities in the printed layers. The glass transition temperature (Tg) of ABS increased and the onset of its degradation shifted towards higher temperatures with the addition of ETM. It can be concluded that the addition of ETM to ABS for FDM 3D printing improved its mechanical and thermal properties.


Sign in / Sign up

Export Citation Format

Share Document