scholarly journals Potential target for mitigation of COVID-19 by food-derived bioactive peptides

2021 ◽  
Vol 16 ◽  
Author(s):  
Kenji Sato

Oral administration of food protein hydrolysate and naturally occurring peptides exert beneficial effects beyond conventional nutritional functions by supplying amino acids for protein synthesis. These peptides are referred to as food-derived bioactive peptides. The coronavirus disease 2019 (COVID-19) is caused by sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some host and viral proteins are involved in the entry of SARS-CoV-2 into cells and their replication. Peptides with specific sequences can interact with these proteins and have potential prophylactic and therapeutic activities against COVID-19. However, it is difficult to deliver food-derived peptides to target organs without degradation by exopeptidases in the body. Alternatively, food-derived peptides and amino acid metabolites have been suggested to decrease risk factors of COVID-19 by modulating the renin-angiotensin system, the innate immune system, and the antioxidant system. This mini-review is based on in vivo responses to food-derived peptides and aims to introduce potential targets for these peptides in decreasing the risk and severity of COVID-19. 

2021 ◽  
Vol 22 (17) ◽  
pp. 9508
Author(s):  
Nhung Thi Phuong Nong ◽  
Jue-Liang Hsu

Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.


2020 ◽  
Vol 21 (6) ◽  
pp. 2192 ◽  
Author(s):  
Forough Jahandideh ◽  
Jianping Wu

In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.


2018 ◽  
Vol 46 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Shayne C. Gad ◽  
JoAnn C. L. Schuh

Safety (“biocompatibility”) assessment of medical devices has evolved along a different path than that of drugs, being historically governed more by the considerations and needs of engineers rather than chemists and biologists. As a result, the involvement of veterinary pathologists has been much more limited—almost entirely to evaluating tissue responses in tissues in direct contact with implanted devices. As devices have become more complex in composition, structure, placement, and use, concerns as to adverse systemic responses in patients have called for more comprehensive and thoughtful evaluations of effects throughout the body. Further complexities arise from the increasing marriage of devices and drug/biologic therapeutics to achieve either better dose control and, specifically, in delivery to target organs/tissues or better tolerance of the body to medical devices (i.e., minimization of the foreign body response). The challenge to pathologists is to integrate in new technologies (such as in vivo imaging and immunology) and ways of viewing interactions with patient bodies. To fail to do so will allow the methods and standards for medical device safety evaluation to be based on chemical analysis and then the limited details inherent in literature-based risk assessments.


2020 ◽  
Vol 17 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Reza Mohammadinejad ◽  
Tahereh Farkhondeh ◽  
Saeed Samarghandian

: Flavonoids are a large group of naturally occurring compounds, which are of interest due to their great pharmacological effects and health-promoting impacts. These properties have led to their extensive application in a variety of pathological conditions, particularly cancer. Flavonoids are used in large quantities in a human's daily diet and a high amount of flavonoids are found in the intestine after oral usage. However, flavonoid concentrations in tissue/plasma are low because of their low bioavailability, the leading to the low efficacy of flavonoids in different clinical disorders. For this reason, nanotechnology application for delivering flavonoids to tumor sites has recently received significant attention. Silibinin is a key member of flavonoids and a bioactive component of silymarin, which is widely isolated from Silybum marianum. This plant-derived chemical has a number of valuable biological and therapeutic activities such as antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, cardioprotective and anti-diabetic. These beneficial effects have been demonstrated in in vivo and in vitro experiments. However, it seems that silibinin has a variety of limitations and poor bioavailability is the most important factor restricting its wide application. Hence, there have been attempts to improve the bioavailability of silibinin and it has been suggested that nano-soldiers are potential candidates for this aim. In the present review, we describe the different drug delivery systems for improving the bioavailability of silibinin.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Marko Poglitsch ◽  
Manuel Haschke ◽  
Andrea Stoller ◽  
Cornelia Schwager ◽  
Oliver Domenig ◽  
...  

Angiotensin concentrations are affected by multiple molecular components including receptors and enzymes which might be either dissolved in plasma or attached to blood cells or endothelial surfaces throughout the body, giving rise to a concentration determining local enzymatic environment. This environment substantially changes during blood collection leading to a rapid and fundamental shift in angiotensin peptide levels. Therefore, a clearly defined and properly controlled sample stabilization procedure is essential for the accurate measurement of in vivo angiotensin peptide levels. Surprisingly, standard samples collected by anti-coagulation with heparin can be used for analyzing the human RAS under well-defined steady-state conditions, allowing RAS-Fingerprint based conclusions about the activities of circulating enzymes involved in angiotensin metabolism. The mass spectrometry based measurements of in vivo RAS-Fingerprints (immediate sample stabilization) or heparin plasma derived ex vivo RAS-Fingerprints in plasma or whole blood provide unique insights into the physiology of the human RAS. RAS-Fingerprinting provides an integrated view about the activity of the enzymes involved in angiotensin metabolism in a plasma sample and therefore represents a powerful tool for characterization of the patient specific “Biochemical Hardware”, which determines angiotensin peptide levels in vivo. The assay is compatible with undiluted plasma and whole blood and can be further applied to long-term stored frozen plasma samples. The utilization of RAS-Fingerprinting in clinical studies will substantially enhance our understanding of the human RAS and could lead to the development of personalized approaches for the treatment and prevention of cardiovascular diseases in the near future.


2019 ◽  
Vol 56 (6) ◽  
pp. 753-759
Author(s):  
N. M. Savushkina ◽  
E. A. Galushko ◽  
N. V. Demidova ◽  
A. V. Gordeev

At present, the role of the renin-angiotensin system (RAS) in regulating the cardiovascular system and maintaining water and electrolyte homeostasis has been well studied. However, over the past decades, new components of the RAS have been identified, suggesting a wider range of its potential effects on the body. It is of fundamentally importance for rheumatologists to affect inflammation, including rheumatoid inflammation, through blockade of angiotensin (AT) II formation via the effects of AT 1–7 and angiotensin-converting enzyme inhibitors, as well as through suppression of angiogenesis, primarily by reducing the production of endothelial growth factor. The organ-protective and antiinflammatory potential of drugs that reduce the production of AT, which has been proven in in vitro and in vivo experiments, allows us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of concomitant hypertension and/or nephropathy.


2012 ◽  
Vol 108 (S2) ◽  
pp. S306-S314 ◽  
Author(s):  
Rajavel Elango ◽  
Crystal Levesque ◽  
Ronald O. Ball ◽  
Paul B. Pencharz

The nutritive value of food protein sources is dependent on the amino acid composition and the bioavailability of the nutritionally indispensable amino acids. Traditionally the methods developed to determine amino acid bioavailability have focused on intestinal absorption or digestibility, which is calculated as the percent of amino acid intake that does not appear in digesta or faeces. Traditional digestibility based methods do not always account for gut endogenous amino acid losses or absorbed amino acids which are unavailable due to the effect of heat processing and the presence of anti-nutritional factors, though methods have been developed to address these issues. Furthermore, digestibility based methods require the use of animal models, thus there is a need to developin vivomethods that can be applied directly in human subjects to identify the proportion of dietary amino acids which is bioavailable, or metabolically available to the body for protein synthesis following digestion and absorption. The indicator amino acid oxidation (IAAO) method developed in our laboratory for humans has been systematically applied to determine almost all indispensable amino acid requirements in adult humans. Oxidation of the indicator amino acid is inversely proportional to whole body protein synthesis and responds rapidly to changes in the bioavailability of amino acids for metabolic processes. Using the IAAO concept, we developed a newin vivomethod in growing pigs, pregnant sows and adult humans to identify the metabolic availability of amino acids in foods. The stable isotope based metabolic availability method is suitable for rapid and routine analysis in humans, and can be used to integrate amino acid requirement data with dietary amino acid availability of foods.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Giuliana Di Rocco ◽  
Silvia Baldari ◽  
Gabriele Toietta

Extracellular vesicles (EVs), such as microvesicles and exosomes, are membranous structures containing bioactive material released by several cells types, including mesenchymal stem/stromal cells (MSCs). Increasing lines of evidences point to EVs as paracrine mediators of the beneficial effects on tissue remodeling associated with cell therapy. Administration of MSCs-derived EVs has therefore the potential to open new and safer therapeutic avenues, alternative to cell-based approaches, for degenerative diseases. However, an enhanced knowledge aboutin vivoEVs trafficking upon delivery is required before effective clinical translation. Only a few studies have focused on the biodistribution analysis of exogenously administered MSCs-derived EVs. Nevertheless, current strategies forin vivotracking in animal models have provided valuable insights on the biodistribution upon systemic delivery of EVs isolated from several cellular sources, indicating in liver, spleen, and lungs the preferential target organs. Different strategies for targeting EVs to specific tissues to enhance their therapeutic efficacy and reduce possible off-target effects have been investigated. Here, in the context of a possible clinical application of MSC-derived EVs for tissue regeneration, we review the existing strategies forin vivotracking and targeting of EVs isolated from different cellular sources and the studies elucidating the biodistribution of exogenously administered EVs.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4479 ◽  
Author(s):  
Lourdes Amigo ◽  
Blanca Hernández-Ledesma

Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.


2021 ◽  
Vol 22 (8) ◽  
pp. 3938
Author(s):  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
Antonello Santini

Many plants have been known for centuries to have medicinal importance with potential beneficial effects on health. Phytotherapeutic compounds are well known to play a globally significant role, in particular in the management and treatment of various chronic diseases. Among these, diabetes can cause long term damage to the body other than having a relevant economic burden on society being among the costliest chronic diseases. This motivated the focus of the proposed Special Issue, intended to develop and exploit the potential role of plants in the management and treatment of diabetes. The main topics included are: (i) description and use of medicinal plants for diabetes management; (ii) the elucidation and delineation of their main components, properties (anti-hyperglycaemic, hypoglicaemic, anti-infiammatory, apoptotic agents, etc.), (iii) the mechanism of action (in vitro and in vivo studies); (iv) formulation of nutraceuticals, botanicals, and dietary supplements useful as tools as an alternative or support to anti-diabetic pharmacological therapies; (v) development of new markers.


Sign in / Sign up

Export Citation Format

Share Document