scholarly journals Hypoxia signalling in the regulation of innate immune training

Author(s):  
Lauren Eades ◽  
Michael Drozd ◽  
Richard M. Cubbon

Innate immune function is shaped by prior exposures in a phenomenon often referred to as ‘memory’ or ‘training’. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.

2019 ◽  
Vol 48 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Arduino A Mangoni ◽  
Roman N Rodionov ◽  
Mark McEvoy ◽  
Angelo Zinellu ◽  
Ciriaco Carru ◽  
...  

Abstract The elucidation of the metabolic pathways of the amino acid arginine and their role in health and disease have been an intensive focus of basic and clinical research for over a century. The recent advent of robust analytical techniques for biomarker assessment in large population cohorts has allowed the investigation of the pathophysiological role of specific arginine metabolites in key chronic disease states in old age, particularly those characterised by a reduced synthesis of endothelial nitric oxide, with consequent vascular disease and atherosclerosis. Two arginine metabolites have been increasingly studied in regard to their potential role in risk stratification and in the identification of novel therapeutic targets: the methylated arginine asymmetric dimethylarginine (ADMA) and the arginine analogue homoarginine. Higher circulating concentrations of ADMA, a potent inhibitor of nitric oxide synthesis, have been shown to predict adverse cardiovascular outcomes. By contrast, there is emerging evidence that homoarginine might exert cardioprotective effects. This review highlights recent advances in the biological and clinical role of ADMA and homoarginine in cardiovascular disease and other emerging fields, particularly chronic obstructive pulmonary disease, dementia, and depression. It also discusses opportunities for future research directions with the ultimate goal of translating knowledge of arginine metabolism, and its role in health and disease, into the clinical care of older adults.


2017 ◽  
Vol 474 (14) ◽  
pp. 2333-2347 ◽  
Author(s):  
Nisha Grandhi Jayaprakash ◽  
Avadhesha Surolia

Glycosylation constitutes one of the most common, ubiquitous and complex forms of post-translational modification. It commences with the synthesis of the protein and plays a significant role in deciding its folded state, oligomerization and thus its function. Recent studies have demonstrated that N-linked glycans help proteins to fold as the stability and folding kinetics are altered with the removal of the glycans from them. Several studies have shown that it alters not only the thermodynamic stability but also the structural features of the folded proteins modulating their interactions and functions. Their inhibition and perturbations have been implicated in diseases from diabetes to degenerative disorders. The intent of this review is to provide insight into the recent advancements in the general understanding on the aspect of glycosylation driven stability of proteins that is imperative to their function and finally their role in health and disease states.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2013 ◽  
Vol 12 (3) ◽  
pp. 135-144 ◽  
Author(s):  
Erik R. Swenson

Hypoxic vasoconstriction in the lung is a unique and fundamental characteristic of the pulmonary circulation. It functions in health and disease states to better preserve ventilation-perfusion matching by diverting blood flow to better ventilated regions when local ventilation is compromised. As more areas of lung become hypoxic either with high altitude or global lung disease, then hypoxic pulmonary vasoconstriction (HPV) becomes less effective in ventilation-perfusion matching and can lead to pulmonary hypertension. HPV is intrinsic to the vascular smooth muscle and its mechanisms remain poorly understood. In addition, the pulmonary vascular endothelium, red cells, lung innervation, and numerous circulating vasoactive agents also affect the strength of HPV. This review will discuss the pathophysiology of HPV and address its role in pulmonary hypertension associated with World Health Organization Group 3 diseases. When sustained beyond many hours, HPV may initiate pulmonary vascular remodeling and lead to more fixed and less oxygen-responsive pulmonary hypertension if the hypoxic stimulus is maintained.


2020 ◽  
Vol 27 (29) ◽  
pp. 4840-4854 ◽  
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Hubert Kalbacher ◽  
Wolfgang Voelter ◽  
Ourania E. Tsitsilonis ◽  
Evangelia Livaniou

Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]


Author(s):  
Yu Zhao ◽  
Ulf Panzer ◽  
Stefan Bonn ◽  
Christian F. Krebs

AbstractSingle-cell biology is transforming the ability of researchers to understand cellular signaling and identity across medical and biological disciplines. Especially for immune-mediated diseases, a single-cell look at immune cell subtypes, signaling, and activity might yield fundamental insights into the disease etiology, mechanisms, and potential therapeutic interventions. In this review, we highlight recent advances in the field of single-cell RNA profiling and their application to understand renal function in health and disease. With a focus on the immune system, in particular on T cells, we propose some key directions of understanding renal inflammation using single-cell approaches. We detail the benefits and shortcomings of the various technological approaches outlined and give advice on potential pitfalls and challenges in experimental setup and computational analysis. Finally, we conclude with a brief outlook into a promising future for single-cell technologies to elucidate kidney function.


2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


Sign in / Sign up

Export Citation Format

Share Document