scholarly journals Inflammation drives synucleinopathy propagation

Author(s):  
Tae-Kyung Kim ◽  
Eun-Jin Bae ◽  
Byung Chul Jung ◽  
Minsun Choi ◽  
Soo-Jean Shin ◽  
...  

Abstract The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. Understanding of the mechanism of the proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. Yet when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. The aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain.

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Taeyeop Park ◽  
Huazhen Chen ◽  
Hee-Yong Kim

Abstract Background Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. Methods For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. Results Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1β in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. Conclusion Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


2005 ◽  
Vol 288 (6) ◽  
pp. R1774-R1782 ◽  
Author(s):  
Adam Sapirstein ◽  
Hideyuki Saito ◽  
Sarah J. Texel ◽  
Tarek A. Samad ◽  
Eileen O’Leary ◽  
...  

The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A2 enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE2 in the brain. These studies seek to determine the function of cytosolic phospholipase A2α (cPLA2α) in inflammatory PGE2 production in the brain. We wondered whether cPLA2α functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA2α (cPLA2α−/−) after systemic administration of LPS. cPLA2α−/− mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE2 concentration of untreated cPLA2α−/− mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE2 was significantly less in cPLA2α−/− than in cPLA2α+/+ mice (24.4 ± 3.8 vs. 49.3 ± 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA2α regulates COX-2 levels and modulates inflammatory PGE2 levels. These results indicate that cPLA2α inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.


2019 ◽  
Vol 15 (2) ◽  
pp. 121-129
Author(s):  
Zhi Rao ◽  
Bo-xia Li ◽  
Yong-Wen Jin ◽  
Wen-Kou ◽  
Yan-rong Ma ◽  
...  

Background: Imatinib (IM) is a chemotherapy medication metabolized by CYP3A4 to Ndesmethyl imatinib (NDI), which shows similar pharmacologic activity to the parent drug. Although methods for determination of IM and/or NDI have been developed extensively, only few observations have been addressed to simultaneously determine IM and NDI in biological tissues such as liver, kidney, heart, brain and bone marrow. Methods: A validated LC-MS/MS method was developed for the quantitative determination of imatinib (IM) and N-desmethyl imatinib (NDI) from rat plasma, bone marrow, brain, heart, liver and kidney. The plasma samples were prepared by protein precipitation, and then the separation of the analytes was achieved using an Agilent Zorbax Eclipse Plus C18 column (4.6 × 100 mm, 3.5 µm) with gradient elution running water (A) and methanol (B). Mass spectrometric detection was achieved by a triplequadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Results: This method was used to investigate the pharmacokinetics and the tissue distributions in rats following oral administration of 25 mg/kg of IM. The pharmacokinetic profiles suggested that IM and NDI are disappeared faster in rats than human, and the tissue distribution results showed that IM and NDI had good tissue penetration and distribution, except for the brain. This is the first report about the large penetrations of IM and NDI in rat bone marrow. Conclusion: The method demonstrated good sensitivity, accuracy, precision and recovery in assays of IM and NDI in rats. The described assay was successfully applied for the evaluation of pharmacokinetics and distribution in the brain, heart, liver, kidney and bone marrow of IM and NDI after a single oral administration of IM to rats.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3306
Author(s):  
Aneri Shah ◽  
Jonathan A. Lindquist ◽  
Lars Rosendahl ◽  
Ingo Schmitz ◽  
Peter R. Mertens

YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Harb ◽  
Justina Jagusch ◽  
Archana Durairaja ◽  
Thomas Endres ◽  
Volkmar Leßmann ◽  
...  

AbstractBrain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF’s role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/−) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/− mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/− mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/− mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.


Author(s):  
Vanessa Kogel ◽  
Stefanie Trinh ◽  
Natalie Gasterich ◽  
Cordian Beyer ◽  
Jochen Seitz

AbstractAstrocytes are the most abundant cell type in the brain and crucial to ensure the metabolic supply of neurons and their synapse formation. Overnutrition as present in patients suffering from obesity causes astrogliosis in the hypothalamus. Other diseases accompanied by malnutrition appear to have an impact on the brain and astrocyte function. In the eating disorder anorexia nervosa (AN), patients suffer from undernutrition and develop volume reductions of the cerebral cortex, associated with reduced astrocyte proliferation and cell count. Although an effect on astrocytes and their function has already been shown for overnutrition, their role in long-term undernutrition remains unclear. The present study used primary rat cerebral cortex astrocytes to investigate their response to chronic glucose starvation. Cells were grown with a medium containing a reduced glucose concentration (2 mM) for 15 days. Long-term glucose starvation increased the expression of a subset of pro-inflammatory genes and shifted the primary astrocyte population to the pro-inflammatory A1-like phenotype. Moreover, genes encoding for proteins involved in the unfolded protein response were elevated. Our findings demonstrate that astrocytes under chronic glucose starvation respond with an inflammatory reaction. With respect to the multiple functions of astrocytes, an association between elevated inflammatory responses due to chronic starvation and alterations found in the brain of patients suffering from undernutrition seems possible.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Sign in / Sign up

Export Citation Format

Share Document