scholarly journals CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247020
Author(s):  
Xiaoling Liu ◽  
Yichen Jia ◽  
Changyuan Shi ◽  
Dechen Kong ◽  
Yuanming Wu ◽  
...  

CYP4B1 belongs to the mammalian CYP4 enzyme family and is predominantly expressed in the lungs of humans. It is responsible for the oxidative metabolism of a wide range of endogenous compounds and xenobiotics. In this study, using data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database, a secondary analysis was performed to explore the expression profile of CYP4B1, as well as its prognostic value in patients with lung adenocarcinoma (LUAD). Based on the obtained results, a significantly decreased CYP4B1 expression was discovered in patients with LUAD when compared with their normal counterparts (p<0.05), and was linked to age younger than 65 years (p = 0.0041), history of pharmaceutical (p = 0.0127) and radiation (p = 0.0340) therapy, mutations in KRAS/EGFR/ALK (p = 0.0239), and living status of dead (p = 0.0026). Survival analysis indicated that the low CYP4B1 expression was an independent prognostic indicator of shorter survival in terms of overall survival (OS) and recurrence-free survival (RFS) in patients with LUAD. The copy number alterations (CNAs) and sites of cg23440155 and cg23414387 hypermethylation might contribute to the decreased CYP4B1 expression. Gene set enrichment analysis (GSEA) suggested that CYP4B1 might act as an oncogene in LUAD by preventing biological metabolism pathways of exogenous and endogenous compounds and enhancing DNA replication and cell cycle activities. In conclusion, CYP4B1 expression may serve as a valuable independent prognostic biomarker and a potential therapeutic target in patients with LUAD.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woon Yong Jung ◽  
Kyueng-Whan Min ◽  
Young Ha Oh

AbstractThe histological classification of lung adenocarcinoma includes 5 types: lepidic, acinar, papillary, micropapillary and solid. The complex gene interactions and anticancer immune response of these types are not well known. The aim of this study was to reveal the survival rates, genetic alterations and immune activities of the five histological types and provide treatment strategies. This study reviewed the histological findings of 517 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database and classified them into five types. We performed gene set enrichment analysis (GSEA) and survival analysis according to the different types. We found six oncogenic gene sets that were higher in lung adenocarcinoma than in normal tissues. In the survival analysis of each type, the acinar type had a favorable prognosis, and the solid subtype had an unfavorable prognosis; however, the survival differences between the other types were not significant. Our study focused on the solid type, which had the poorest prognosis. The solid type was related to adaptive immune resistance associated with elevated CD8 T cells and high CD274 (encoding PD-L1) expression. In the pathway analyses, the solid type was significantly related to high vascular endothelial growth factor (VEGF)-A expression, reflecting tumor angiogenesis. Non-necrosis/low immune response affected by high VEGF-A was associated with worse prognosis. The solid type associated with high VEGF-A expression may contribute to the development of therapeutic strategies for lung adenocarcinoma.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12624
Author(s):  
Zhaodong Li ◽  
Hongtian Fei ◽  
Siyu Lei ◽  
Fengtong Hao ◽  
Lijie Yang ◽  
...  

Background Lung adenocarcinoma (LUAD) is the most prevalent tumor in lung carcinoma cases and threatens human life seriously worldwide. Here we attempt to identify a prognostic biomarker and potential therapeutic target for LUAD patients. Methods Differentially expressed genes (DEGs) shared by GSE18842, GSE75037, GSE101929 and GSE19188 profiles were determined and used for protein-protein interaction analysis, enrichment analysis and clinical correlation analysis to search for the core gene, whose expression was further validated in multiple databases and LUAD cells (A549 and PC-9) by quantitative real-time PCR (qRT-PCR) and western blot analyses. Its prognostic value was estimated using the Kaplan-Meier method, meta-analysis and Cox regression analysis based on the Cancer Genome Atlas (TCGA) dataset and co-expression analysis was conducted using the Oncomine database. Gene Set Enrichment Analysis (GSEA) was performed to illuminate the potential functions of the core gene. Results A total of 115 shared DEGs were found, of which 24 DEGs were identified as candidate hub genes with potential functions associated with cell cycle and FOXM1 transcription factor network. Among these candidates, HMMR was identified as the core gene, which was highly expressed in LUAD as verified by multiple datasets and cell samples. Besides, high HMMR expression was found to independently predict poor survival in patients with LUAD. Co-expression analysis showed that HMMR was closely related to FOXM1 and was mainly involved in cell cycle as suggested by GSEA. Conclusion HMMR might be served as an independent prognostic biomarker for LUAD patients, which needs further validation in subsequent studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu-Sheng Liu ◽  
Lu-Meng Zhou ◽  
Ling-Ling Yuan ◽  
Yan Gao ◽  
Xue-Yan Kui ◽  
...  

BackgroundOverexpression of NPM1 can promote the growth and proliferation of various tumor cells. However, there are few studies on the comprehensive analysis of NPM1 in lung adenocarcinoma (LUAD).MethodsTCGA and GEO data sets were used to analyze the expression of NPM1 in LUAD and clinicopathological analysis. The GO/KEGG enrichment analysis of NPM1 co-expression and gene set enrichment analysis (GSEA) were performed using R software package. The relationship between NPM1 expression and LUAD immune infiltration was analyzed using TIMER, GEPIA database and TCGA data sets, and the relationship between NPM1 expression level and LUAD m6A modification and glycolysis was analyzed using TCGA and GEO data sets.ResultsNPM1 was overexpressed in a variety of tumors including LUAD, and the ROC curve showed that NPM1 had a certain accuracy in predicting the outcome of tumors and normal samples. The expression level of NPM1 in LUAD is significantly related to tumor stage and prognosis. The GO/KEGG enrichment analysis indicated that NPM1 was closely related to translational initiation, ribosome, structural constituent of ribosome, ribosome, Parkinson disease, and RNA transport. GSEA showed that the main enrichment pathway of NPM1-related differential genes was mainly related to mTORC1 mediated signaling, p53 hypoxia pathway, signaling by EGFR in cancer, antigen activates B cell receptor BCR leading to generation of second messengers, aerobic glycolysis and methylation pathways. The analysis of TIMER, GEPIA database and TCGA data sets showed that the expression level of NPM1 was negatively correlated with B cells and NK cells. The TCGA and GEO data sets analysis indicated that the NPM1 expression was significantly correlated with one m6A modifier related gene (YTHDF2) and five glycolysis related genes (ENO1, HK2, LDHA, LDHB and SLC2A1).ConclusionNPM1 is a prognostic biomarker involved in immune infiltration of LUAD and associated with m6A modification and glycolysis. NPM1 can be used as an effective target for diagnosis and treatment of LUAD.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2021 ◽  
Author(s):  
Xiawei Yang ◽  
Xuyong Sun ◽  
Feng Yang ◽  
Liugen Lan ◽  
Ning Wen ◽  
...  

Abstract Background While PRKDC (Protein Kinase, DNA-Activated, Catalytic Subunit) plays an important role in double-strand break (DSB) repair to retain genomic stability, there is still no pan-cancer analysis based on large clinical information on the relationship between PRKDC and different tumors. For the first time, this research used numerous databases to perform a pan-cancer review for PRKDC to explore the possible mechanism of PRKDC in the etiology and outcomes in various tumors. Methods PRKDC's expression profile and prognostic significance in pan-cancer were investigated based on various databases and online platforms, including TIMER2, GEPIA2, cBioPortal, CPTAC, and SangerBox. We applied the TIMER to identified the interlink of PRKDC and the immune infiltration in assorted tumors, and the SangerBox online platform was adopted to find out the relevance between PRKDC and immune checkpoint genes, TMB, and MSI in tumors. GeneMANIA tool was employed to create a Protein-Protein Interaction (PPI) analysis, gene set enrichment analysis (GSEA) was conducted to performed gene enrichment analysis. Results Overall, tumor tissue presented a higher degree of PRKDC expression than adjacent normal tissue. Meanwhile, patients with high PRKDC expression have a worse prognosis. PRKDC mutations were present in almost all TCGA tumors and might lead to a better survival prognosis. PRKDC expression level was shown a positive correlation with tumor-infiltrating immune cells (TIICs). PRKDC high expression cohorts were enriched in "cell cycle," "oocyte meiosis," and "RNA-degradation" signaling pathways. Conclusions This study revealed the potential value of PRKDC tumor immunology and as a therapeutic target and prognostic biomarker in pan-cancer.


2021 ◽  
Author(s):  
Pei Liu ◽  
Jiamin Guo ◽  
Xiaoxiao Xu ◽  
Haixin Sun ◽  
Zheng Gong

Abstract Background: Tumor microenvironment (TME) has great effects on the development process of glioma, and we sought to identify effective prognostic factors by analyzing data from patients with glioma. In this paper, CIBERSORT and ESTIMATE calculations were employed to figure up the ratio of tumor-infiltrating immune cells (TICs) and the quantity of immune and stromal components in 698 glioma dates from The Cancer Genome Atlas (TCGA) database. In addition, differentially expressed genes (DEGs) were studied by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and single genes associated with prognosis were identified by PPI network and COX combined analysis. Results: Immune and stromal scores of TME were significantly correlated with glioma patient survival. Through protein–protein interaction (PPI) network and regression analysis of COX, we finally determined that SYK was the best prognostic factor for patients with glioma. Gene Set Enrichment Analysis (GSEA) and CIBERSORT analysis were also employed, with the former showed that high-expression SYK group’s genes are principally enriched immune-related activities and the latter revealed that SYK expression was positively associated with T cells CD4 memory resting and Monocytes. All the above experimental analyses provided the theoretical basis for the biological prediction of SYK.Conclusions: SYK contributes to immune predictors in glioma patients by facilitating the shift of TME from immune dominance to metabolic activity, which provides promising insights into the treatment of glioma.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jian-Yu Zhang ◽  
Ke-Zhi Shi ◽  
Xiang-Yu Liao ◽  
Shi-Jun Li ◽  
Dan Bao ◽  
...  

The proteasome has been validated as an anticancer drug target, while the role of a subunit of proteasome, PSMC6, in lung adenocarcinoma (LUAD) has not been fully unveiled. In this study, we observed that both the RNA and protein of PSMC6 were highly upregulated in LUAD compared with the adjacent normal tissues. Moreover, a high PSMC6 expression was associated with poor prognosis. In accordance with this finding, PSMC6 was associated with poor tumor differentiation. Furthermore, the silence of PSMC6 by small interference RNAs (siRNAs) could significantly inhibit cell growth, migration, and invasion in lung cancer cell lines, suggesting that PSMC6 might serve as a promising therapeutic target in LUAD. To further explore the molecular mechanism of PSMC6 in LUAD, we observed that the proteasome subunits, such as PSMD10, PSMD6, PSMD9, PSMD13, PSMB3, PSMB1, PSMA4, PSMC1, PSMC2, PSMD7, and PSMD14, were highly correlated with PSMC6 expression. Based on the gene set enrichment analysis, we observed that these proteasome subunits were involved in the degradation of AXIN protein. The correlation analysis revealed that the positively correlated genes with PSMC6 were highly enriched in WNT signaling-related pathways, demonstrating that the PSMC6 overexpression may activate WNT signaling via degrading the AXIN protein, thereby promoting tumor progression. In summary, we systematically evaluated the differential expression levels and prognostic values of PSMC6 and predicted its biological function in LUAD, which suggested that PSMC6 might act as a promising therapeutic target in LUAD.


2021 ◽  
Author(s):  
Yueren Yan ◽  
Zhendong Gao ◽  
Han Han ◽  
Yue Zhao ◽  
Yang Zhang ◽  
...  

Abstract Purpose: NRAS plays a pivotal role in progression of various kinds of somatic malignancies; however, the correlation between NRAS and lung adenocarcinoma is less known. We aim to analyze the prognostic value of NRAS expression in lung adenocarcinoma, and explore the relationship between NRAS and tumor immune microenvironment. Methods: We obtained the transcriptome pofiles and clinical data of LUAD from The Cancer Genome Atlas database and three Genome Expression Omnibus datasets. Specimens from 325 patients with completely resected lung adenocarcinoma were collected for immunohistochemical assays of NRAS, PD-L1, PD-1 and TIM-3. Then we performed gene set enrichment analysis to investigate cancer-related and immune-related signaling pathways. TIMER algorithms were performed to evaluate tumor immune infiltrating cells and immune-related biomarkers.Results: Compared with adjacent non-tumor tissue, NRAS expression was significantly upregulated in LUAD tissue. NRAS expression was significantly correlated with more advanced stage and positive lymph nodes. Kaplan-Meier curves and Cox analysis suggested that high NRAS expression led to a poor prognosis, and could be an independent prognostic factor in LUAD patients. Besides, NRAS expression was positively correlated with CD8+ T cells, macrophages, and neutrophils, and negatively correlated with B cells and CD4+ T cells. The expression level of NRAS was positively correlated with PD-L1, PD-1, and TIM-3 both at RNA and protein level. Conclusions: To conclude, we found NRAS a novel prognostic biomarker in LUAD. Besides, the expression level of NRAS may influence the prognosis of LUAD via various kinds of cancer-related pathways and remodeling TIM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiayu Ma ◽  
Xiaochuan Chen ◽  
Mingqiang Lin ◽  
Zhiping Wang ◽  
Yahua Wu ◽  
...  

Abstract Background Lung cancer is the most common malignant tumor. Identification of novel diagnostic and prognostic biomarkers for lung cancer is a key research imperative. The role of centromere protein K (CENPK) in cancer is an emerging research hotspot. However, the role of CENPK in the progression of lung adenocarcinoma (LAC) is not well characterized. Methods In this study, we identified CENPK as a potential new gene for lung cancer based on bioinformatics analysis. In addition, in vitro experiments were performed to verify the function of this gene. We investigated the expression of CENPK in LAC by analyses of datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analyses, gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted to evaluate the diagnostic and prognostic relevance of CENPK. Then, for evaluating the biological behavior and role of CENPK in lung cancer cells, we did a series of vitro experiments, such as immunohistochemistry analysis, Western blot analysis, CCK8 assay, transwell assay, flow cytometry, and wound healing assay. Results We demonstrated overexpression of CENPK in LAC; in addition, increased expression of CENPK was associated with clinical progression. Moreover, CENPK was found to be an independent risk factor in patients with LAC. Furthermore, we observed activation of CENPK-related signaling pathways in patients with LAC. Conclusions Our findings indicate a potential role of CENPK in promoting tumor proliferation, invasion, and metastasis. It may serve as a novel diagnostic and prognostic biomarker in patients with LAC.


Sign in / Sign up

Export Citation Format

Share Document