scholarly journals Investigation of Structures of Sintered Processed Fly Ash Materials: Resources of Industrial Wastes

2022 ◽  
Vol 4 (1) ◽  
pp. 1-10
Author(s):  
Panigrahi M.K ◽  

The aim of the work is to use industrial waste as resource materials for formulating useful product for society. Materials are prepared using Fly ash as main ingredient through sintered process via solid state route. Different materials are prepared using various sintering temperature. The crystal structural and phases are explored by XRD analysis. Mulite phase are investigated, which is indicated the insulating properties of the materials. Surface topography of the prepared materials is analyzed by FESEM characterization. EDS analysis is also done during the FESEM characterization and is assessed the various chemical compositions. Identification of different chemical groups in the processed Fly Ash is carried out by FTIR analysis. Highest electrical resistivity is estimated and is found to be 35.1 MΩ, which indicates the very good insulating property.

2020 ◽  
Vol 13 (1) ◽  
pp. 16-25
Author(s):  
Zi Wang ◽  
Hongjun Chen ◽  
Chunhu Yu ◽  
Zeyang Xue ◽  
Pengxiang Wang ◽  
...  

Background: The deposits of iron tailing will pose a great risk of environmental pollution and serious landscape impact which will affect the quality of life of humans. Therefore, it is urgent to utilize iron tailing to produce valuable products. Methods: The tailing ceramsites were analysed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The roles of the tailing content, sintering temperature and duration time in the performance of the tailing ceramsites were analysed and the optimal sintering parameters were determined. Results: The bulk density, apparent density and cylinder compressive strength of the tailing ceramsites increase considerably with the increase of the sintering temperature and duration time. The cylinder compressive strength of the tailing ceramsites increases with increasing the tailing content. The optimal sintering parameter is 1100°C for 40 min. The cylinder compressive strength of the tailing ceramsites obtained at 1100°C for 40 min reaches 10.1 MPa. XRD analysis shows that the tailing ceramsites mainly consist of CaSiO3, Al2SiO5, MgSiO3, Ca7Si2P2O16, CaAl2Si2O8, Ca2Fe2O5 and SiO2 phases when the sintering temperature and duration time were increased to 1100°C and 40 min, respectively. Conclusion: The tailing ceramsites were obtained from iron tailing, sludge and fly ash as the raw materials at 1100°C for 40 min. The obtained ceramsites exhibited high mechanical performance.


2021 ◽  
Author(s):  
Lizia Thankam Gnanadurai ◽  
Neelakantan Thruvas Renganathan ◽  
Christopher Gnanaraj Selvaraj

Abstract The diminution of the natural sources in the form of dredging the riverbanks and blasting the mountain ranges has always dented the balance of the eco system which in turn results in disasters as well at times. This alarming situation accelerates the global warming, threatens the biota life in riverbanks, diminishes the ground water level, harms the aquatic life and affects the growth of agriculture. This study is an attempt to synthesis fine aggregates from the industrial byproducts such as fly ash and GGBS through the process of geopolymerization which enables the formation of aluminosilicate networks upon the addition of the alkaline activator solution (Na 2 SiO 3 + NaOH) into the byproducts which is then allowed for oven drying as well as air drying to accelerate the process. The Fly ash geopolymerized fine aggregate(F-GFA) and the GGBS geopolymerized fine aggregate(G-GFA) were noted to exhibit adequate physiochemical and mechanical properties in par with the natural sand. The production of GFA is considered as eco friendly process since it ceases the extensive usage of river sand and incorporates the effective usage of Industrial by products (Fly ash and GGBS) thereby minimizing the land pollution and its consequent harmful hazards. Though the F-GFA and G-GFA showcased higher water absorption ratio than the natural sand, owing to the unreacted fly ash and GGBS particles. Nevertheless, the same initiated the adequate compressive strength attainment up to 90% of natural sand, by reacting with the lime expelled out of the hydration process of cement in the mortar specimens developed in this experimental study. The microstructure of the samples was further examined through Optical microscope, Scanning Electron microscope (SEM) and X-Ray Diffraction (XRD) analysis in order to corroborate the experimental results of this study. The results thus obtained, strongly recommend the potential of the F-GFA and G-GFA as an ideal replacement material for natural sand.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Suchita Rai ◽  
Dilip H. Lataye ◽  
M. J. Chaddha ◽  
R. S. Mishra ◽  
P. Mahendiran ◽  
...  

“Red mud” or “bauxite residue” is a highly alkaline waste generated from alumina refinery with a pH of 10.5–12.5 which poses serious environmental problems. Neutralization or its treatment by sintering in presence of additives is one of the methods for overcoming the caustic problem as it fixes nearly all the leachable free caustic soda present in red mud. In the present study, feasibility of reducing the alkaline nature of red mud by sintering using fly ash as an additive via Taguchi methodology and its use for brick production, as an alternative to clay, is investigated. The analysis of variance (ANOVA) shows that sintering temperature is the most significant parameter in the process. A pH of 8.9 was obtained at 25–50% of red mud and 50–75% fly ash with water and temperature of . Alternatively 50% of red mud can be mixed with 50% of fly ash with water at temperature of to get a pH of about 8.4. The mechanism of this process has been explained with also emphasis on chemical, mineralogical, and morphological analysis of the sintered red mud. The results would be extremely useful in utilization of red mud in building and construction industry.


2014 ◽  
Vol 787 ◽  
pp. 338-341
Author(s):  
Cheng Hsing Hsu ◽  
Chia Hao Chang ◽  
Wen Shiush Chen ◽  
Jenn Sen Lin ◽  
Chun Hung Lai

Microwave dielectric properties and microstructures of (Ca0.8Sr0.2)ZrO3 ceramics prepared by the conventional solid-state route have been studied. The values of the dielectric constant (εr) were 22-26. The Q×f values of 10400–11500 GHz were obtained when the sintering temperatures were in the range of 1400–1490°C. The temperature coefficient of the resonant frequency τf was not sensitive to the sintering temperature. The εr value of 26, the Q×f value of 11500 GHz, and the τf value of-9 ppm/°C were obtained for (Ca0.8Sr0.2)ZrO3 ceramics sintering at 1490°C. The ceramic, (Ca0.8Sr0.2)ZrO3 is proposed as a suitable candidate material for application in highly selective microwave ceramic passive components.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Lijun Zhao ◽  
Hanshuang Xiao ◽  
Baodong Wang ◽  
Qi Sun

In recent years, one type of alumina rich fly ash (ARFA) with about 50 wt% of alumina has been extensively investigated for alumina extraction in China. Due to the silica in ARFA, alumina extraction would have to generate a huge amount of solid waste. There is a growing interest in the glasses in ARFA, because they are composed mainly of silica and could be removed prior to alumina extraction. In this work, the glasses in ARFA have been investigated by chemical methods, that is, acid and base digestions. The chemical compositions have been measured by XRF for ARFA from the digestion processes. The K2O standard, XRD, and FTIR spectroscopies were successfully used to define the digestions processes, and size analysis and SEM-EDX provided rich information on particle transformations. As a result, acid and base digestion methods were found to produce very similar results for the glasses in ARFA. The K2O standard was attributed to the formation of glasses by illites, and TiO2and Fe2O3were proposed to originate from ilmenite in alumina rich coals (ARC). Some implications of the results were also discussed for the alumina extraction from ARFA.


2018 ◽  
Vol 8 (7) ◽  
pp. 1187 ◽  
Author(s):  
Yanbing Zong ◽  
Xuedong Zhang ◽  
Emile Mukiza ◽  
Xiaoxiong Xu ◽  
Fei Li

In this study, SiO2–Al2O3–CaO–MgO steel slag ceramics containing 5 wt % MgO were used for the preparation of ceramic bodies, with the replacement of 5–20 wt % quartz and feldspar by fly ash. The effect of the addition of fly ash on the sintering shrinkage, water absorption, sintering range, and flexural strength of the steel slag ceramic was studied. Furthermore, the crystalline phase transitions and microstructures of the sintered samples were investigated by XRD, Fourier transform infrared (FTIR), and SEM. The results showed that the addition of fly ash affected the crystalline phases of the sintered ceramic samples. The main crystal phases of the base steel slag ceramic sample without fly ash were quartz, diopside, and augite. With increasing fly ash content, the quartz diffraction peak decreased gradually, while the diffraction peak intensity of anorthite became stronger. The mechanical properties of the samples decreased with the increasing amount of fly ash. The addition of fly ash (0–20 wt %) affected the optimum sintering temperature (1130–1160 °C) and widened the sintering range. The maximum addition amount of fly ash should be 15 wt %, for which the optimum sintering temperature was 1145 °C, water absorption was 0.03%, and flexural strength was 43.37 MPa higher than the Chinese national standard GBT 4100-2015 requirements.


Sign in / Sign up

Export Citation Format

Share Document