Oxidative stress and antioxidant defence systems in response to pesticide stress

2015 ◽  
pp. 103-124 ◽  
Author(s):  
Fozia Bashir ◽  
Sumira Jan
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Maria Murta Santi ◽  
Paula Alves Silva ◽  
Isabella Fernandes Martins Santos ◽  
Silvane Maria Fonseca Murta

Abstract Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract


Author(s):  
Dumitriţa RUGINǍ ◽  
Adela PINTEA ◽  
Raluca PÂRLOG ◽  
Andreea VARGA

Oxidative stress causes biological changes responsible for carcinogenesis and aging in human cells. The retinal pigmented epithelium is continuously exposed to oxidative stress. Therefore reactive oxygen species (ROS) and products of lipid peroxidation accumulate in RPE. Neutralization of ROS occurs in retina by the action of antioxidant defence systems. In the present study, the protective effect of caffeic acid (3,4-dihydroxy cinnamic acid), a dietary phenolic compound, has been examined in normal and in oxidative stress conditions (500 µM peroxide oxygen) in cultures human epithelial pigment retinal cells (Nowak, M. et al.). The cell viability, the antioxidant enzymes activity (CAT, GPx, SOD) and the level of intracellular reactive oxygen species (ROS) were determined. Exposure to l00 µM caffeic acid for 24 h induced cellular changes indicating the protective effect of caffeic acid in RPE cells. Caffeic acid did not show any cytotoxic effect at concentrations lower than 200 μM in culture medium. Treatment of RPE cells with caffeic acid causes an increase of catalase, glutathione peroxidase and superoxide dismutase activity, especially in cells treated with hydrogen peroxide. Caffeic acid causes a decrease of ROS level in cells treated with hydrogen peroxide. This study proved that caffeic acid or food that contain high levels of this phenolic acid may have beneficial effects in prevention of retinal diseases associated with oxidative stress by improving antioxidant defence systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Christonikos Leventelis ◽  
Nikolaos Goutzourelas ◽  
Aikaterini Kortsinidou ◽  
Ypatios Spanidis ◽  
Georgia Toulia ◽  
...  

Buprenorphine and methadone are two substances widely used in the substitution treatment of patients who are addicted to opioids. Although it is known that they partly act efficiently towards this direction, there is no evidence regarding their effects on the redox status of patients, a mechanism that could potentially improve their action. Therefore, the aim of the present investigation was to examine the impact of buprenorphine and methadone, which are administered as substitutes to heroin-dependent patients on specific redox biomarkers in the blood. From the results obtained, both the buprenorphine (n=21) and the methadone (n=21) groups exhibited oxidative stress and compromised antioxidant defence. This was evident by the decreased glutathione (GSH) concentration and catalase activity in erythrocytes and the increased concentrations of thiobarbituric acid reactive substances (TBARS) and protein carbonyls in the plasma, while there was no significant alteration of plasma total antioxidant capacity (TAC) compared to the healthy individuals (n=29). Furthermore, methadone revealed more severe oxidant action compared to buprenorphine. Based on relevant studies, the tested substitutes mitigate the detrimental effects of heroin on patient redox status; still it appears that they need to be boosted. Therefore, concomitant antioxidant administration could potentially enhance their beneficial action, and most probably, buprenorphine that did not induce oxidative stress in such a severe mode as methadone, on the regulation of blood redox status.


2013 ◽  
Vol 72 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Navnath M. Pise ◽  
Dattatry K. Gaikwad ◽  
Tanaji G. Jagtap

Abstract -Oxidative stress and antioxidant defence systems were assessed in a marine red alga Porphyra vietnamensis Tanaka et Pham-Hoang Ho, from India. Lipid peroxidation (LPX) and hydrogen peroxide (H2O2) were measured as oxidative stress markers. Antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to environmental conditions (pollution levels) from selective locations along the central west coast of India. Levels of LPX, H2O2, CAT and GST were significantly higher in samples collected from Dona Paula than in samples from Malvan and Kunkeshwar, while a lower concentration of AsA was found in samples from Dona Paula. Heavy metals such as Cd, Pb and Hg in higher concentrations in these areas than in other sites were also observed. Variation of oxidative stress indices in response to the accumulation of heavy metals within P. vietnamensis could be used as molecular biomarkers for the assessment and monitoring of environmental quality in ecologically sensitive marine habitats.


2010 ◽  
Vol 104 (10) ◽  
pp. 1492-1499 ◽  
Author(s):  
Helena Andersson ◽  
Anette Karlsen ◽  
Rune Blomhoff ◽  
Truls Raastad ◽  
Fawzi Kadi

Changes in plasma endogenous and dietary antioxidants and oxidative stress markers were studied following two 90 min elite female soccer games separated by 72 h of either active or passive recovery. The active recovery group (n 8) trained for 1 h at 22 and 46 h after the first game (low-intensity cycling and resistance training), while the passive group rested (n 8). Blood samples were taken before the games; immediately after the games; 21, 45 and 69 h after the first game; and immediately after the second game. The oxidative stress markers and antioxidants were not affected by active recovery. The oxidative stress marker GSSG increased by the same extent after both the games, while the lipid peroxidation marker diacron-reactive oxygen metabolite remained unchanged. The endogenous antioxidants total glutathione and uric acid and ferric reducing/antioxidant power increased immediately after both the games with the same amplitude, while increases in cysteine, cysteine–glycine and total thiols reached significant levels only after the second game. The changes in dietary antioxidants after the first game were either rapid and persistent (tocopherols and ascorbic acid (AA) increased; polyphenols decreased) or delayed (carotenoids). This resulted in high pre-second game levels of tocopherols, AA and carotenoids. Polyphenols returned to baseline at 69 h, and were not affected by the second game. In conclusion, the soccer-associated dietary antioxidant defence, but not the endogenous antioxidant defence, is persistent. Similar acute oxidative stress and endogenous antioxidant responses and dissimilar dietary antioxidant reactions occur during two repeated female soccer games. Finally, the complex antioxidant response to soccer is not affected by active recovery training.


2008 ◽  
Vol 28 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Chandramani Pathak ◽  
Yogesh K. Jaiswal ◽  
Manjula Vinayak

Constant generation of ROS (reactive oxygen species) during normal cellular metabolism of an organism is generally balanced by a similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defence results in an increased level of ROS, causing oxidative stress, which leads to promotion of malignancy. Queuine is a hyper-modified base analogue of guanine, found at the first anticodon position of the Q-family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells; however, hypo-modification of Q-tRNAs is closely associated with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular function. Queuine is a nutrient factor for eukaryotes. It is found to promote the cellular antioxidant defence system and inhibit tumorigenesis. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase are found to be low in the DLAT (Dalton's lymphoma ascites transplanted) mouse liver compared with normal mouse liver. However, exogenous administration of queuine to the DLAT cancerous mouse improves the activities of antioxidant enzymes. These results suggest that queuine promotes the antioxidant defence system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document