Integrating Soil Moisture Active/Passive Observations with Rainfall Data Using an Analytic Model for Drought Monitoring at the Continental Scale

Author(s):  
Feng Ma ◽  
Lifeng Luo ◽  
Aizhong Ye
2018 ◽  
Vol 37 (2) ◽  
pp. 107-124
Author(s):  
Mwajuma Juma ◽  
Deogratias M.M. Mulungu

Agricultural sector is important for the economy of Tanzania, but in recent years there is decline in its growth and performance because of persistent droughts. An in-depth study of droughts was conducted on Wami watershed through rainfall and satellite microwave remote sensing data leading for estimates of meteorological droughts and soil moisture based droughts, respectively. Rainfall data during 1973-2008 was used to obtain Drought Severity Index (DSI) and active imaging microwave radar data during 1997-2009 from ESA’s SAR missions of ENVISAT and ERS was used to obtain soil moisture anomalies (SMA). Soil map was used to explain discrepancies in droughts from SMA to DSI maps at intervals of time. Seasonality analysis and DSI results showed that the main sub-seasons contributing to rainy season are October through December, January-February and March through May, and drought years were 1984, 1991, 1994, 2004 and 2006. Results showed that the last decade (2000s) had severe droughts that covered 35-39% of the Wami watershed and could have affected 1128000 people. The soil moisture based drought maps showed the same drought conditions as DSI maps in January, March, May and October. This indicated that in most areas the meteorological droughts can be used to infer to droughts conditions in the soil during the rainy season. The obtained drought events and impacts were confirmed in the field through interviews. However, in July SMA map showed normal and wet conditions whereas it was a dry season for DSI map. This showed that when rainy season ends, the soil still holds some moisture, which can be available for simple crops like vegetables. Therefore, it can be concluded that the SMA was able to provide a better alternative to DSI especially for increased spatial coverage and accuracy of drought monitoring for agricultural production. The SMA enables to map droughts conditions at any point spatially rather than point based DSI maps, which may be prone to rainfall data gaps and spatial interpolation errors. The SMA approach for drought monitoring may be useful to rainfall data scarcity areas of Tanzania and for agricultural droughts risk management.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1564 ◽  
Author(s):  
Melanie Oertel ◽  
Francisco Meza ◽  
Jorge Gironás ◽  
Christopher A. Scott ◽  
Facundo Rojas ◽  
...  

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.


2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yueling Ma ◽  
Carsten Montzka ◽  
Bagher Bayat ◽  
Stefan Kollet

The lack of high-quality continental-scale groundwater table depth observations necessitates developing an indirect method to produce reliable estimation for water table depth anomalies (wtda) over Europe to facilitate European groundwater management under drought conditions. Long Short-Term Memory (LSTM) networks are a deep learning technology to exploit long-short-term dependencies in the input-output relationship, which have been observed in the response of groundwater dynamics to atmospheric and land surface processes. Here, we introduced different input variables including precipitation anomalies (pra), which is the most common proxy of wtda, for the networks to arrive at improved wtda estimates at individual pixels over Europe in various experiments. All input and target data involved in this study were obtained from the simulated TSMP-G2A data set. We performed wavelet coherence analysis to gain a comprehensive understanding of the contributions of different input variable combinations to wtda estimates. Based on the different experiments, we derived an indirect method utilizing LSTM networks with pra and soil moisture anomaly (θa) as input, which achieved the optimal network performance. The regional medians of test R2 scores and RMSEs obtained by the method in the areas with wtd ≤ 3.0 m were 76–95% and 0.17–0.30, respectively, constituting a 20–66% increase in median R2 and a 0.19–0.30 decrease in median RMSEs compared to the LSTM networks only with pra as input. Our results show that introducing θa significantly improved the performance of the trained networks to predict wtda, indicating the substantial contribution of θa to explain groundwater anomalies. Also, the European wtda map reproduced by the method had good agreement with that derived from the TSMP-G2A data set with respect to drought severity, successfully detecting ~41% of strong drought events (wtda ≥ 1.5) and ~29% of extreme drought events (wtda ≥ 2) in August 2015. The study emphasizes the importance to combine soil moisture information with precipitation information in quantifying or predicting groundwater anomalies. In the future, the indirect method derived in this study can be transferred to real-time monitoring of groundwater drought at the continental scale using remotely sensed soil moisture and precipitation observations or respective information from weather prediction models.


2020 ◽  
Author(s):  
Noemi Vergopolan ◽  
Sitian Xiong ◽  
Lyndon Estes ◽  
Niko Wanders ◽  
Nathaniel W. Chaney ◽  
...  

Abstract. Soil moisture is highly variable in space, and its deficits (i.e. droughts) plays an important role in modulating crop yields and its variability across landscapes. Limited hydroclimate and yield data, however, hampers drought impact monitoring and assessment at the farmer field-scale. This study demonstrates the potential of field-scale soil moisture simulations to advance high-resolution agricultural yield prediction and drought monitoring at the smallholder farm field-scale. We present a multi-scale modeling approach that combines HydroBlocks, a physically-based hyper-resolution Land Surface Model (LSM), and machine learning. We applied HydroBlocks to simulate root zone soil moisture and soil temperature in Zambia at 3-hourly 30-m resolution. These simulations along with remotely sensed vegetation indices, meteorological conditions, and data describing the physical properties of the landscape (topography, land cover, soil properties) were combined with district-level maize data to train a random forest model (RF) to predict maize yields at the district- and field-scale (250-m) levels. Our model predicted yields with a coefficient of variation (R2) of 0.61, Mean Absolute Error (MAE) of 349 kg ha−1, and mean normalized error of 22 %. We captured maize losses due to the 2015/2016 El Niño drought at similar levels to losses reported by the Food and Agriculture Organization (FAO). Our results revealed that soil moisture is the strongest and most reliable predictor of maize yield, driving its spatial and temporal variability. Consequently, soil moisture was also the most effective indicator of drought impacts in crops when compared with precipitation, soil and air temperatures, and remotely-sensed NDVI-based drought indices. By combining field-scale root zone soil moisture estimates with observed maize yield data, this research demonstrates how field-scale modeling can help bridge the spatial scale discontinuity gap between drought monitoring and agricultural impacts.


2020 ◽  
Author(s):  
Laura Crocetti ◽  
Milan Fischer ◽  
Matthias Forkel ◽  
Aleš Grlj ◽  
Wai-Tim Ng ◽  
...  

&lt;p&gt;The Pannonian Basin is a region in the southeastern part of Central Europe that is heavily used for agricultural purposes. It is geomorphological defined as the plain area that is surrounded by the Alps in the west, the Dinaric Alps in the Southwest, and the Carpathian mountains in the North, East and Southeast. In recent decades, the Pannonian Basin has experienced several drought episodes, leading to severe impacts on the environment, society, and economy. Ongoing human-induced climate change, characterised by increasing temperature and potential evapotranspiration as well as changes in precipitation distribution will further exacerbate the frequency and intensity of extreme events. Therefore, it is important to monitor, model, and forecast droughts and their impact on the environment for a better adaption to the changing weather and climate extremes. The increasing availability of long-term Earth observation (EO) data with high-resolution, combined with the progress in machine learning algorithms and artificial intelligence, are expected to improve the drought monitoring and impact prediction capacities.&lt;/p&gt;&lt;p&gt;Here, we assess novel EO-based products with respect to drought processes in the Pannonian Basin. To identify meteorological and agricultural drought, the Standardized Precipitation-Evapotranspiration Index was computed from the ERA5 meteorological reanalysis and compared with drought indicators based on EO time series of soil moisture and vegetation like the Soil Water Index or the Normalized Difference Vegetation Index. We suggest that at resolution representing the ERA5 reanalysis (~0.25&amp;#176;) or coarser, both meteorological as well as EO data can identify drought events similarly well. However, at finer spatial scales (e.g. 1 km) the variability of biophysical properties between fields cannot be represented by meteorological data but can be captured by EO data. Furthermore, we analyse historical drought events and how they occur in different EO datasets. It is planned to enhance the forecasting of agricultural drought and estimating drought impacts on agriculture through exploiting the potential of EO soil moisture and vegetation data in a data-driven machine learning framework.&lt;/p&gt;&lt;p&gt;This study is funded by the DryPan project of the European Space Agency (https://www.eodc.eu/esa-drypan/).&lt;/p&gt;


2016 ◽  
Vol 17 (6) ◽  
pp. 1645-1660 ◽  
Author(s):  
H. M. Duerinck ◽  
R. J. van der Ent ◽  
N. C. van de Giesen ◽  
G. Schoups ◽  
V. Babovic ◽  
...  

Abstract The lack of understanding on the soil moisture–precipitation feedback mechanisms remains a large source of uncertainty for land–atmosphere coupled models. Previous observation-based studies on the soil moisture–precipitation feedback in Illinois have shown contradictory results. This paper extends earlier research by providing a more holistic analysis considering different scales based on an 11-yr (2003–13) hourly soil moisture dataset, which makes it possible to revisit the disputed hypothesis on the correlation between warm-season soil moisture and subsequent precipitation. This study finds a strong positive correlation between late spring/early summer state-average soil moisture at the root-zone depths and subsequent state-average summer precipitation. On the daily to weekly time scale, however, no relation is found. Moreover, regional analysis suggests that precipitation variability over central Illinois can be best explained by the soil moisture variability in northwest Illinois. Using a back-trajectory method [Water Accounting Model-2 layers (WAM-2layers)] from May to July, the evaporative sources of precipitation in Illinois are identified. The pattern of the source regions shows little interannual variability, while the strength of the sources changes significantly and the Gulf of Mexico contributes more during wet years. However, strong influences (teleconnections) of sea surface temperatures on the subsequent precipitation variability in Illinois are not found on a seasonal scale. The long time scale of the soil moisture–precipitation correlation and the weak influences of SSTs and climate indices may suggest that precipitation variability in spring/summer in Illinois is mostly related to continental-scale soil moisture–precipitation feedback.


Sign in / Sign up

Export Citation Format

Share Document