Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype

2004 ◽  
Vol 50 (5) ◽  
pp. 1665-1676 ◽  
Author(s):  
Anita Hanyecz ◽  
Suzanne E. Berlo ◽  
Sándor Szántó ◽  
Chris P. M. Broeren ◽  
Katalin Mikecz ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2363
Author(s):  
Kornélia Bodó ◽  
Zoltán Kellermayer ◽  
Zoltán László ◽  
Ákos Boros ◽  
Bohdana Kokhanyuk ◽  
...  

Regeneration of body parts and their interaction with the immune response is a poorly understood aspect of earthworm biology. Consequently, we aimed to study the mechanisms of innate immunity during regeneration in Eisenia andrei earthworms. In the course of anterior and posterior regeneration, we documented the kinetical aspects of segment restoration by histochemistry. Cell proliferation peaked at two weeks and remitted by four weeks in regenerating earthworms. Apoptotic cells were present throughout the cell renewal period. Distinct immune cell (e.g., coelomocyte) subsets were accumulated in the newly-formed blastema in the close proximity of the apoptotic area. Regenerating earthworms have decreased pattern recognition receptors (PRRs) (e.g., TLR, except for scavenger receptor) and antimicrobial peptides (AMPs) (e.g., lysenin) mRNA patterns compared to intact earthworms. In contrast, at the protein level, mirroring regulation of lysenins became evident. Experimental coelomocyte depletion caused significantly impaired cell divisions and blastema formation during anterior and posterior regeneration. These obtained novel data allow us to gain insight into the intricate interactions of regeneration and invertebrate innate immunity.


Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1231-1238 ◽  
Author(s):  
David J Begun ◽  
Penn Whitley

Abstract NF-κB and IκB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-κB/IκB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appears to be restricted to the IκB domain. A possible explanation for these results is that Relish is a site of evolutionary conflict between flies and their microbial pathogens.


2020 ◽  
Author(s):  
Romain Schellenberger ◽  
Jérôme Crouzet ◽  
Arvin Nickzad ◽  
Alexander Kutschera ◽  
Tim Gerster ◽  
...  

AbstractPlant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from L-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial swarming motility behavior. The bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29) mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) sensing in the plant Arabidopsis thaliana. Here, we show that the lipidic secretome from Pseudomonas aeruginosa comprising RLs, HAAs and mc-3-OH-FAs stimulates Arabidopsis immunity. HAAs, like mc-3-O-FAs, are sensed by LORE and induce canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, albeit abolishing sensing by LORE, do not impair their ability to trigger plant defense. In addition, our results show that RL-triggered immune response is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yalan Lai ◽  
Xiaoyan Xia ◽  
Anchun Cheng ◽  
Mingshu Wang ◽  
Xumin Ou ◽  
...  

Duck hepatitis A virus (DHAV), which mainly infects 1- to 4-week-old ducklings, has a fatality rate of 95% and poses a huge economic threat to the duck industry. However, the mechanism by which DHAV-1 regulates the immune response of host cells is rarely reported. This study examined whether DHAV-1 contains a viral protein that can regulate the innate immunity of host cells and its specific regulatory mechanism, further exploring the mechanism by which DHAV-1 resists the host immune response. In the study, the dual-luciferase reporter gene system was used to screen the viral protein that regulates the host innate immunity and the target of this viral protein. The results indicate that the DHAV-1 3C protein inhibits the pathway upstream of interferon (IFN)-β by targeting the interferon regulatory factor 7 (IRF7) protein. In addition, we found that the 3C protein inhibits the nuclear translocation of the IRF7 protein. Further experiments showed that the 3C protein interacts with the IRF7 protein through its N-terminus and that the 3C protein degrades the IRF7 protein in a caspase 3-dependent manner, thereby inhibiting the IFN-β-mediated antiviral response to promote the replication of DHAV-1. The results of this study are expected to serve as a reference for elucidating the mechanisms of DHAV-1 infection and pathogenicity.


2020 ◽  
pp. 2001584
Author(s):  
Jason Girkin ◽  
Su-Ling Loo ◽  
Camille Esneau ◽  
Steven Maltby ◽  
Francesca Mercuri ◽  
...  

Research questionAssessment of whether TLR2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases.MethodsWe employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III IFN production, as well as the lung tissue and epithelial cell immune transcriptome.ResultsWe show in vivo, that a single INNA-X treatment induced innate immune priming characterised by low-level IFN-λ, Fas ligand, chemokine expression and airway lymphocyte recruitment. Treatment 7-days before infection significantly reduced lung viral load, increased IFN-β/λ expression and inhibited neutrophilic inflammation. Corticosteroid treatment enhanced the anti-inflammatory effects of INNA-X. Treatment 1-day before infection increased expression of 190 lung tissue immune genes. This tissue gene expression signature was absent with INNA-X treatment 7-days before infection, suggesting an alternate mechanism, potentially via establishment of immune cell-mediated mucosal innate immunity. In vitro, INNA-X treatment induced a priming response defined by upregulated IFN-λ, chemokine and anti-microbial gene expression that preceded an accelerated response to infection enriched for NF-κB-regulated genes and reduced viral loads, even in epithelial cells derived from asthmatic donors with intrinsic delayed anti-viral immune response.ConclusionAirway epithelial cell TLR2 activation induces prolonged innate immune priming, defined by early NF-κB activation, IFN-λ expression and lymphocyte recruitment. This response enhanced anti-viral innate immunity and reduced virus-induced airway inflammation.


Author(s):  
Dalia Cicily Kattiparambil Dixon ◽  
Chameli Ratan ◽  
Bhagyalakshmi Nair ◽  
Sabitha Mangalath ◽  
Rachy Abraham ◽  
...  

: Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and respond with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain(NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARS-CoV2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


2020 ◽  
Vol 1 (9) ◽  
pp. 64-71
Author(s):  
E. A. Klimov ◽  
◽  
E. K. Novitskaya ◽  
S. N. Koval’chuk ◽  
◽  
...  

Intercellular adhesion molecule CD209 (DC-SIGN) is a membrane C-type lectin receptor expressed on the surface of dendritic cells and macrophages. CD209 plays an important role in innate immunity. Many studies have shown the possibility of interaction of the CD209 molecule with a number of dangerous pathogens of humans and animals. This review summarizes information on the structure of the CD209 gene and its product, describes the role of the CD209 protein in the immune response, in the migration of dendritic cells from the blood to the tissue, and their interaction with neutrophils. The currently known signaling pathway of activation through the CD209 inflammatory response is presented. The role of CD209 as an endocytic antigen receptor and the participation of the protein in immune evasion of pathogens are discussed. The mechanisms known to date for the development of infections caused by pathogens of various nature in animals are described.


2020 ◽  
Vol 140 ◽  
pp. 111275 ◽  
Author(s):  
Chongyao Li ◽  
Peng Song ◽  
Fan Lei ◽  
Si Lu ◽  
Dongting Xu ◽  
...  

2010 ◽  
Vol 10 ◽  
pp. 1826-1839 ◽  
Author(s):  
Carlotta Costa ◽  
Giulia Germena ◽  
Emilio Hirsch

Phagocytes, like neutrophils and macrophages, are specialized cells evolved to clear infectious pathogens. This function resides at the core of innate immunity and requires a series of concerted events that lead first to migration to the infected tissue and then to the killing of the invading pathogens. Molecular mechanisms underlying these processes are starting to emerge and point to the interplay between two families of crucial proteins: the PI3K lipid kinases and the Rac GTPases. This review focuses on how these two protein families contribute to migration, phagocytosis, and reactive oxygen species production, as well as their epistatic and feedback relations that finely tune these crucial aspects of the immune response.


2019 ◽  
Vol 12 (07) ◽  
pp. 1950077 ◽  
Author(s):  
Sulanie Perera ◽  
S. S. N. Perera

Dengue is an acute arthropode-borne virus, belonging to the family Flaviviridae. Currently, there are no vaccines or treatments available against dengue. Thus it is important to understand the dynamics of dengue in order to control the infection. In this paper, we study the long-term dynamics of the model that is presented in [S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Comput. Math. Methods Med. 2018 (2018) 8798057, 18 pp. https://doi.org/10.1155/2018/8798057 ] which describes the interaction of virus with infected and uninfected cells in the presence of innate and humoral immune responses. It was found the model has three equilibria, namely: infection free equilibrium, no immune equilibrium and endemic equilibrium, then analyzed its stability analytically. The analytical findings of each model have been exemplified by numerical simulations. Given the fact that intensity of dengue virus replication at early times of infection could determine clinical outcomes, it is important to understand the impact of innate immunity, which is believed to be the first line of defense against an invading pathogen. For this we carry out a simulation case study to investigate the importance of innate immune response on dengue virus dynamics. A comparison was done assuming that innate immunity was active; innate immunity was in quasi-steady state and innate immunity was inactive during the virus replication process. By a further analysis of the qualitative behavior of the quasi-steady state, it was observed that innate immune response plays a pivotal role in dengue virus dynamics. It can change the dynamical behavior of the system and is essential for the virus clearance.


Sign in / Sign up

Export Citation Format

Share Document