X-Ray topographic study of the influence of thermal annealing on the bending of49BF2+-implanted Si wafers

1982 ◽  
Vol 17 (9) ◽  
pp. 1167-1175 ◽  
Author(s):  
I. S. Vassilev ◽  
Z. Furmanik ◽  
I. N. Petrov ◽  
P. A. Botev ◽  
J. Auleytner
Keyword(s):  
2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2013 ◽  
Vol 48 (18) ◽  
pp. 6357-6366 ◽  
Author(s):  
C. Demaria ◽  
P. Benzi ◽  
A. Arrais ◽  
E. Bottizzo ◽  
P. Antoniotti ◽  
...  

1991 ◽  
Vol 69 (3-4) ◽  
pp. 451-455 ◽  
Author(s):  
H. Lafontaine ◽  
J. F. Currie ◽  
S. Boily ◽  
M. Chaker ◽  
H. Pépin

Tungsten thin films are deposited with a triode sputtering system in order to obtain an absorbing layer for X-ray masks. The mechanical stress is studied as a function of different pressure and RF power conditions during deposition. Rapid thermal annealing at different temperatures and durations is performed in order to produce films under low compressive stress. We observe that the stress changes occur over the time scale of seconds at the annealing temperature and that the corresponding activation energies are low (60 meV). Grain growth in a preferred orientation explains the observed changes in stress. The magnitude in the change of stress is in good agreement with a model proposed by Hoffman et al. relating the stress to grain size and grain boundary dimensions. [Journal translation]


2013 ◽  
Vol 1617 ◽  
pp. 43-48
Author(s):  
R. Cisneros Tamayo ◽  
I.J. Gerrero Moreno ◽  
A. Vivas Hernandez ◽  
J.L. Casas Espinola ◽  
L. Shcherbyna

ABSTRACTThe photoluminescence (PL), its temperature dependence and X-ray diffraction (XRD) have been studied in MBE grown GaAs/AlGaAs/InGaAs/AlGaAs /GaAs quantum wells (QWs) with InAs quantum dots embedded in the center of InGaAs layer in the freshly prepared states and after the thermal treatments during 2 hours at 640 or 710 °C. The structures contained two buffer (Al0.3Ga0.7As/In0.15Ga0.85As) and two capping (In0.15Ga0.85As / Al0.3Ga0.7As) layers. The temperature dependences of PL peak positions have been analyzed in the temperature range 10-500K with the aim to investigate the QD composition and its variation at thermal annealing. The experimental parameters of the temperature variation of PL peak position in the InAs QDs have been compared with the known one for the bulk InAs crystals and the QD composition variation due to Ga/Al/In inter diffusion at thermal treatments has been detected. XRD have been studied with the aim to estimate the capping/buffer layer compositions in the different QW layers in freshly prepared state and after the thermal annealing. The obtained emission and XRD data and their dependences on the thermal treatment have been analyzed and discussed.


2013 ◽  
Vol 40 (1) ◽  
pp. 0106003
Author(s):  
王健 Wang Jian ◽  
谢自力 Xie Zili ◽  
张韵 Zhang Yun ◽  
滕龙 Teng Long ◽  
李烨操 Li Yecao ◽  
...  

1995 ◽  
Vol 387 ◽  
Author(s):  
Po-ching Chen ◽  
Klaus Yung-jane Hsu ◽  
Joseph J. Loferski ◽  
Huey-liang Hwang

AbstractMicrowave afterglow plasma oxidation at a low temperature (600 °C ) and rapid thermal annealing (RTA) were combined to grow high quality ultra-thin dielectrics. This new approach has a low thermal budget. The mid-gap interface state density of oxides pretreated in N2O plasma was decreased to about 5×1010 cm−2eV−1 after rapid thermal annealing at 950 °C.It was found that RTA is very effective for relieving the oxide stress and reducing the interface state density. Nitrogen incorporated in oxides by the N2O plasma pretreatment of the Si surface helped to reduce the interface state density. Microstructures of ultra-thin oxide grown by microwave afterglow oxidation with or without RTA were revealed by extended-X-ray-absorption-finestructure (EXAFS) and X-ray photoelectron spectroscopy (XPS) analysis.


2007 ◽  
Vol 101 (11) ◽  
pp. 113517 ◽  
Author(s):  
R. P. Wang ◽  
D. Y. Choi ◽  
A. V. Rode ◽  
S. J. Madden ◽  
B. Luther-Davies

Author(s):  
Peter Zietlow ◽  
Tobias Beirau ◽  
Boriana Mihailova ◽  
Lee A. Groat ◽  
Thomas Chudy ◽  
...  

AbstractRadiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document