Zinc supplementation alleviates endoplasmic reticulum stress during porcine oocyte in vitro maturation by upregulating zinc transporters

Author(s):  
Muhammad Rosyid Ridlo ◽  
Geon A. Kim ◽  
Anukul Taweechaipaisankul ◽  
Eui Hyun Kim ◽  
Byeong Chun Lee
2017 ◽  
Vol 64 (2) ◽  
pp. e12458 ◽  
Author(s):  
Hyo-Jin Park ◽  
Jae-Young Park ◽  
Jin-Woo Kim ◽  
Seul-Gi Yang ◽  
Jae-Min Jung ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198742 ◽  
Author(s):  
Natalibeth Barrera ◽  
Pedro C. dos Santos Neto ◽  
Federico Cuadro ◽  
Diego Bosolasco ◽  
Ana P. Mulet ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen Chen ◽  
Chenzhou Wu ◽  
Yafei Chen ◽  
Yuhao Guo ◽  
Ling Qiu ◽  
...  

AbstractC18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


Author(s):  
Mohamed Omar Taqi ◽  
Mohammed Saeed-Zidane ◽  
Samuel Gebremedhn ◽  
Dessie Salilew-Wondim ◽  
Ernst Tholen ◽  
...  

AbstractTranscription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


2021 ◽  
Vol 165 ◽  
pp. 44
Author(s):  
Eleonora Cremonini ◽  
Maëlys Rouget ◽  
Solenne Arredi ◽  
Charlotte Devulder-Mercier ◽  
Robin Cellier ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. 1426-1434
Author(s):  
Hairui Xie ◽  
Lili Zhou ◽  
Zhijiang Chen ◽  
Hong Zhao

Achondroplasia is a kind of congenital dysplasia due to the defect of endochondral ossification. Achondroplasia is considered to be a protein folding disease leading to endoplasmic reticulum stress. Endoplasmic reticulum stress may lead to disease by affecting the function and survival state of chondrocytes, but the specific mechanism requires further study. In this study, bioinformatics methods, online database mining, screening of differentially expressed genes for pathway enrichment, and interaction analysis were conducted to detect the Wnt family member 5a (Wnt5a) gene. Additionally, we designed a novel DNAzymes-based nanocomposite that can simultaneously silence Wnt5a genes in chondrocytes. The nanocomposite was composed of amino-functionalized cobalt oxyhydroxide nanoflakes modified by DNAzymes that target the Wnt5a gene. Further, we conducted in vitro experiments to verify that Wnt5a can mediate the mitogen-activated protein kinase signaling pathway through the endoplasmic reticulum stress pathway to affect the proliferation of chondrocytes.


2018 ◽  
Vol 6 (4) ◽  
pp. 155-162 ◽  
Author(s):  
Sylwia Borys-Wójcik ◽  
Ievgenia Kocherova ◽  
Piotr Celichowski ◽  
Małgorzata Popis ◽  
Michal Jeseta ◽  
...  

AbstractA wide variety of mechanisms controlling oligomerization are observed. The dynamic nature of protein oligomerization is important for bioactivity control. The oocyte must undergo a series of changes to become a mature form before it can fully participate in the processes associated with its function as a female gamete. The growth of oocytes in the follicular environment is accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). It has been shown that oocytes tested before and after in vitro maturation (IVM) differ significantly in the transcriptomic and proteomic profiles. The aim of this study was to determine new proteomic markers for the oligomerization of porcine oocyte proteins that are associated with cell maturation competence. The Affymetrix microarray assay was performed to examine the gene expression profile associated with protein oligomerization in oocytes before and after IVM. In total, 12258 different transcriptomes were analyzed, of which 419 genes with lower expression in oocytes after IVM. We found 9 genes: GJA1, VCP, JUP, MIF, MAP3K1, INSR, ANGPTL4, EIF2AK3, DECR1, which were significantly down-regulated in oocytes after IVM (in vitro group) compared to oocytes analyzed before IVM (in vivo group). The higher expression of genes involved in the oligomerization of the protein before IVM indicates that they can be recognized as important markers of biological activation of proteins necessary for the further growth and development of pig embryos.


Sign in / Sign up

Export Citation Format

Share Document