TGF‐β1 stimulates aromatase expression and estradiol production through SMAD2 and ERK1/2 signaling pathways in human granulosa‐lutein cells

Author(s):  
Jung‐Chien Cheng ◽  
Lanlan Fang ◽  
Yang Yan ◽  
Jingyan He ◽  
Yanjie Guo ◽  
...  
2021 ◽  
Vol 83 ◽  
pp. 104547
Author(s):  
Zhenzhen Cheng ◽  
Jingjing Tu ◽  
Hongpan Zhang ◽  
Yi zhang ◽  
Benhong Zhou

FEBS Journal ◽  
2017 ◽  
Vol 284 (20) ◽  
pp. 3437-3454 ◽  
Author(s):  
Ana Rodríguez-García ◽  
Paula Samsó ◽  
Pere Fontova ◽  
Helga Simon-Molas ◽  
Anna Manzano ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
De Jin ◽  
Xuedong An ◽  
Yuqing Zhang ◽  
Shenghui Zhao ◽  
Liyun Duan ◽  
...  

Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear.Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection.Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-β1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-β1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-β1 signaling pathways.Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 323 ◽  
Author(s):  
Hyun Jung ◽  
Dae-Sung Lee ◽  
Seong Park ◽  
Jung Choi ◽  
Won-Kyo Jung ◽  
...  

Nasal polyps (NPs) are a multifactorial disorder associated with a chronic inflammatory state of the nasal mucosa. Fucoxanthin (Fx) is a characteristic orange carotenoid obtained from brown algae and has diverse immunological properties. The present study investigated whether Fx inhibits fibrosis-related effects in nasal polyp-derived fibroblasts (NPDFs) and elucidated the molecular signaling pathways involved. The production of collagen type I (Col-1) was investigated in NP tissue via immunohistochemistry and western blot analysis. NPDFs were treated with transforming growth factor (TGF)-β1 (1 ng/mL) in the presence or absence of Fx (5–30 µM). The levels of α-smooth muscle actin (α-SMA), Col-1, and phosphorylated (p)-Smad 2/3, signal protein-1 (SP-1), MAPKs (mitogen-activated protein kinases), and Akt were measured by western blot analysis. The expression of Col-1 was detected in NP tissues. TGF-β1 stimulated the production of α-SMA and Col-1, and stimulated the contraction of collagen gel. However, pretreatment with Fx attenuated these effects. Furthermore, these inhibitory effects were mediated through modulation of both Smad 2/3 and Akt/SP-1 signaling pathways in TGF-β1-induced NPDFs. The results from the present study suggest that Fx may be a novel anti-fibrotic agent for the treatment of NP formation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xin-Mei Lin ◽  
Shao-Bin Liu ◽  
Ying-Hua Luo ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase, p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a potential therapy for human lung cancer.


2014 ◽  
Vol 564 ◽  
pp. 229-236 ◽  
Author(s):  
Xiang Wang ◽  
Yanhui Zhu ◽  
Hairong Tao ◽  
Chen Jin ◽  
Yonzhang Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document