scholarly journals Activation of human γδ T cells and NK cells by Staphylococcal enterotoxins requires both monocytes and conventional T cells

Author(s):  
Manuel Mata Forsberg ◽  
Claudia Arasa ◽  
Willemien Zwol ◽  
Sibel Uzunçayir ◽  
Anna Schönbichler ◽  
...  
2009 ◽  
Vol 296 (5) ◽  
pp. G1054-G1059 ◽  
Author(s):  
Satoshi Kuboki ◽  
Nozomu Sakai ◽  
Johannes Tschöp ◽  
Michael J. Edwards ◽  
Alex B. Lentsch ◽  
...  

Helper T cells are known to mediate hepatic ischemia/reperfusion (I/R) injury. However, the precise mechanisms and subsets of CD4+ T cells that contribute to this injury are still controversial. Therefore, we sought to determine the contributions of different CD4+ T cell subsets during hepatic I/R injury. Wild-type, OT-II, or T cell receptor (TCR)-δ-deficient mice were subjected to 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Additionally, wild-type mice were pretreated with anti-CD1d, -NK1.1, or -IL-2R-α antibodies before I/R injury. OT-II mice had diminished liver injury compared with wild-type mice, implicating that antigen-dependent activation of CD4+ T cells through TCRs is involved in hepatic I/R injury. TCR-δ knockout mice had decreased hepatic neutrophil accumulation, suggesting that γδ T cells regulate neutrophil recruitment. We found that natural killer T (NKT) cells, but not NK cells, contribute to hepatic I/R injury via CD1d-dependent activation of their TCRs, as depletion of NKT cells by anti-CD1d antibody or depletion of both NKT cells and NK cells by anti-NK1.1 attenuated liver injury. Although regulatory T cells (Treg) are known to suppress T cell-dependent inflammation, depletion of Treg cells had little effect on hepatic I/R injury. The data suggest that antigen-dependent activation of CD4+ T cells contributes to hepatic I/R injury. Among the subsets of CD4+ T cells, it appears that γδ T cells contribute to neutrophil recruitment and that NKT cells directly injure the liver. In contrast, NK cells and Treg have little effects on hepatic I/R injury.


2015 ◽  
Vol 6 ◽  
Author(s):  
Sarah C. Edwards ◽  
Aoife M. McGinley ◽  
Niamh C. McGuinness ◽  
Kingston H. G. Mills

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 337-338
Author(s):  
Austin B. Bigley ◽  
Guillaume Spielmann ◽  
Jerrald L. Rector ◽  
Mark R. Morrison ◽  
Richard J. Simpson

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A8.1-A8
Author(s):  
J Wienke ◽  
WM Kholosy ◽  
LL Visser ◽  
KM Keller ◽  
P Lijnzaad ◽  
...  

BackgroundImmunotherapy with CAR-T cells, as well as immune checkpoint blockade, show limited clinical efficacy in the pediatric solid cancer neuroblastoma, despite the success in various adult cancers. The lacking efficacy may be due to various immune evasion strategies employed by neuroblastoma tumors, leading to altered functionality of tumor-infiltrating immune cells. We aimed to provide a comprehensive overview of the composition and function of the neuroblastoma immune environment, as well as relevant immunoregulatory interactions (=), to identify novel targets for immunotherapy.Materials and Methods25 tumor samples from 20 patients (17 with high-risk disease, 6 with MYCN amplification), were collected during diagnostic biopsy pre-treatment (n=10) or during resection surgery after induction chemotherapy (n=15). Samples were enzymatically digested, single-cell FACS sorted and sequenced by Cel-Seq2 protocol.ResultsLymphoid cells in the TME consisted of αβ-, γδ-T cells, NK cells and B cells. Among αβ-T cells we identified CD8+ T cells, two functionally distinct clusters of CD4+ T cells, naive-like T cells and FOXP3+ regulatory T cells (Tregs). CD8+ T cells had reduced cytotoxic capacity compared to blood-derived T cells from a reference group. Tregs expressed high levels of PRDM1, LAYN and ICOS, suggesting an effector Treg profile, which is associated with increased inhibitory capacity. Although NK cells expressed the cytotoxic genes NKG7, KLRF1, GNLY, GZMB and PRF1, their expression was significantly lower than in blood-derived reference NK cells. Gene set enrichment analysis (GSEA) confirmed a reduced cytotoxic capacity of tumoral NK cells, which correlated with a decreased expression of activating receptors (r=0.41, p<0.001) and increased TGFβ signaling (r=-0.45, p<0.001). In addition, NK cells highly expressed the heterodimeric receptor KLRC1:KLRD1, which can inhibit NK cell function through HLA-E binding. High HLA-E expression by endothelial, immune and mesenchymal cells confirmed its inhibitory activity in the TME. Within the myeloid compartment we identified various immunosuppressive populations, comprising a cluster of IL10 and VEGFA expressing macrophages, three clusters of M2 differentiated macrophages expressing MMP9 and LGALS3, and dendritic cells with intact antigen presenting capacity, but high expression of numerous genes encoding immunosuppressive molecules such as IDO1, LGALS1, LGALS2, CCL22 and NECTIN2. In MYCN amplified tumors, specifically, we observed even lower cytotoxic capacity of CD8+ T and NK cells. We identified increased TGFB1 expression and defective antigen presentation by myeloid and tumor cells as potential causes for reduced cytotoxicity in MYCN amplified tumors. To identify relevant targets for immunotherapy we constructed an unbiased interaction network, which revealed NECTIN1=CD96 and MIF=CD74 as active immunoregulatory interactions between tumor and T/NK cells, and CD80/CD86=CTLA4, CLEC2D=KLRB1, HLA-E=KLRC1/KLRC2, CD99=PILRA, LGALS9=HAVCR2, and NECTIN2=TIGIT between myeloid and T/NK cells.ConclusionsCytotoxic lymphocytes in the neuroblastoma TME show reduced cytotoxic capacity, likely due to highly immunosuppressive myeloid cells, Tregs and numerous immunoregulatory interactions, which may serve as novel targets for immunotherapy in neuroblastoma.Disclosure InformationJ. Wienke: None. W.M. Kholosy: None. L.L. Visser: None. K.M. Keller: None. P. Lijnzaad: None. T. Margaritis: None. K.P.S. Langenberg: None. R.R. De Krijger: None. F.C.P. Holstege: None. J.J. Molenaar: None.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A761-A761
Author(s):  
Ryan Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundαPD-L1 bladder cancer (BC) immunotherapy is effective in <30% of cases.1 To address the large αPD-L1-unresponsive subset of patients, we tested αIL-2/IL-2 complexes (IL-2c) that block IL-2 from binding high-affinity IL-2Rα (CD25) for preferential IL-2Rβ (CD122) binding.2 Immunosuppressive regulatory T cells capture IL-2 by CD25 whereas antitumor CD8+ T, γδ T, and NK cells use CD122. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe used PD-L1+ mouse BC cell lines MB49 and MBT-2, for orthotopic, intravesical (i.e., in bladder) and intravenous challenge studies of local versus lung metastatic BC.ResultsαPD-L1 or IL-2c alone reduced tumor burden and extended survival in local MB49 and MBT-2. Using in vivo cell depletions, we found that γδ T cells and NK cells, but strikingly not CD8+ T cells, were necessary for IL-2c efficacy in bladder. We confirmed γδ T cell requirements for IL-2c, but not αPD-L1 efficacy in γδ T cell-null TCRδKO mice. TCRβKO conventional T cell-null mice exhibited IL-2c, but not αPD-L1 responsiveness for orthotopic BC treatment. Neither agent alone treated lung metastatic MB49 or MBT-2 but the drug combination improved survival in both tumor models. Combination treatment effects in lungs were distinct from bladder, requiring CD8+ T and NK cells, but not γδ T cells.ConclusionsBC immunotherapy effects differ by anatomic compartment and use distinct mechanisms to treat primary and metastatic BC. CD122-directed IL-2 is a promising BC immunotherapy strategy, and IL-2c is a candidate mediator through innate immune effects. αPD-L1 could improve IL-2c efficacy by engagement of adaptive immune responses including to improve metastatic disease treatment efficacy.Ethics ApprovalAll procedures involving animals in this study were approved by the UT Health San Antonio Institutional Animal Care and Use Committee (IACUC) and conducted in accordance with UT Health San Antonio Department of Laboratory Animal Resources standards.ReferencesShah AY, Gao J, Siefker-Radtke AO. Five new therapies or just one new treatment? A critical look at immune checkpoint inhibition in urothelial cancer: Future Medicine, 2017.Arenas-Ramirez N, Zou C, Popp S, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Science translational medicine 2016;8(367):367ra166-367ra166.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3944-3944
Author(s):  
Bruno Paiva ◽  
Maria Victoria Mateos ◽  
Lucía López-Corral ◽  
María-Belén Vidriales ◽  
Miguel T. Hernandez ◽  
...  

Abstract Abstract 3944 Lenalidomide is an immunomodulatory agent that enhances T and NK cell activation, being this consideration as a major player in its anti-myeloma effect. However, in MM lenalidomide is usually combined with the immunosuppressant dexamethasone, which has raised questions regarding a potential abrogation of this immunomodulatory effect. In fact, this may be a dilemma upon treating early stage MM patients with lenalidomide +/− dexamethasone. Moreover, our current knowledge of the immune system in SMM is limited. Herein we evaluated by multiparameter flow cytometry (MFC) immunophenotyping peripheral blood (PB) T and NK cells from high-risk SMM patients (N=33), treated according to the QUIREDEX trial (NCT 00480363): an induction phase of 9 four-week cycles of LenDex followed by maintenance with lenalidomide until disease progression. To evaluate the immune status of T and NK cells of SMM patients, we compared them at baseline vs healthy adults (HA) aged over 60 years (N=10). To assess the effect of LenDex on T and NK cells of SMM patients, we compared baseline samples vs those studied after 3 and 9 cycles of LenDex. To address the question whether dexamethasone antagonizes the immunomodulatory properties of lenalidomide, we compared in 11 of the 33 patients, the PB T and NK cells at the end of induction (9th cycle of LenDex) vs during maintenance (lenalidomide alone and at least 3 months after dexamethasone discontinuation). The percentage of PB T cells in high-risk SMM patients at baseline was increased when compared to HA (23% vs 17%; P=.02), mainly due to expansion of CD8 T cells (P=.03). Of note, γδ T cells were also increased in SMM (0.8% vs 0.3%; P=.003). In turn, no differences (P>.05) were noted for both the CD56dim and CD56bright NK cell compartments. However, when a more detailed immunophenotypic characterization was carried out, CD4 and/or CD8 T cells from SMM patients showed decreased expression of activation markers (CD25, P≤.04; CD54, P<.001 and CD154, P=.002), as well as decreased production of the Th1 related cytokines (IFNγ, P=.03; TNFα, P≤.003; and IL-2, P=.02). We then investigated the effect of LenDex treatment. After 3 and 9 cycles of LenDex both CD4 and/or CD8 T cells showed up-regulation of Th1related chemokines (CCR5; p<.001) and cytokine production (IFNγ, P=.03; TNFα, P=.03 and IL-2, P=.02), as well as increased expression of activation markers (CD69, P≤.005; CD25, P<.001; CD28, P≤.04; CD54, P<.001 and HLA-DR, P<.001). Similarly, CD56dim and CD56bright NK cells showed up-regulation of HLA-DR (P<.001), the antibody-dependent cell-mediated cytotoxicity associated receptor CD16 (p≤.005), and the adhesion molecules CD11a (p≤.001) and CD11b (p≤.005). Concerning cell cycle analysis, the percentage of cells in S-phase was significantly increased from baseline vs. 3 vs. 9 cycles of LenDex for T CD4 (0.04% vs 0.13% vs 0.13%; p<.001), CD8 (0.05% vs 0.13% vs 0.18%; p<.001) and NK cells (0.07% vs 0.16% vs 0.15%; p<.001). Interestingly, an unsupervised cluster analysis of the overall immunophenotypic expression profile obtained after 9 cycles of LenDex was able to discriminate two groups of patients with different activation profiles particularly on T CD8 cells, with differences (P<.05) in both their percentage in PB and expression of activation, Th1 and maturation markers. Patients displaying a higher activation profile showed a trend towards increased depth of response after 9 cycles of LenDex (sCR+CR: 31% vs 15%; p=.229), as well as time-to progression (TTP) to symptomatic MM (TTP at 2-years: 100% vs 79%; P=.177). Finally, we explored whether the immunomodulatory properties of lenalidomide could be increased when dexamethasone was removed for the maintenance phase. Regarding T and NK cell distribution, only an increase in the percentage of CD4 T cells was found (9% vs. 12%, P=.04), whereas no differences (P>.05) were noted regarding the immunophenotypic expression profile of T and NK cells studied. In summary, we show that in high-risk SMM patients at baseline CD8 and γδ T cells are increased but overall T cells show an impaired activation profile. Treatment with LenDex induces an activation and proliferation of T and NK cells which may contribute to disease control. Finally, our results do not show an inhibition of the immunomodulatory effects of lenalidomide by the concomitant use of dexamethasone. Disclosures: Paiva: Celgene: Honoraria; Janssen: Honoraria. Off Label Use: lenalidomide is not approved for smoldering myeloma. Mateos:Janssen: Honoraria; Celgene: Honoraria. Rosiñol:Janssen: Honoraria; Celgene: Honoraria. Lahuerta:Janssen: Honoraria; Celgene: Honoraria. Blade:Janssen: Honoraria; Celgene: Honoraria. San Miguel:Janssen-Cilag: Honoraria; Celgene: Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3885-3885 ◽  
Author(s):  
Moniek A DeWitte ◽  
Liane te Boome ◽  
Lotte van der Wagen ◽  
Jurgen H Kuball

Abstract Introduction: The outcome of allo-SCT in patients with poor risk leukemia is still hampered by GVHD and relapse. The innate immune system has been reported to contribute to tumor control, with lower incidence of GVHD. Specific depletion of αβ T- cells – key players in the development of GVHD – will render NK cells and γδ T cells within the allograft. Recently reported results have shown the great promise of this approach in haploindentical transplantations. Within this study, we aim to extend αβT- cell depleted allo-SCT to patients with a MRD or MUD. Methods: Patients with either ‘poor-risk’ or ‘very poor-risk’ leukemia were included in this phase I study. Either HLA matched siblings (MRD) or fully matched HLA matched (10/10) unrelated donors (MUD) were eligible. abT-cell reduction was performed by negative selection with anti-abTCR antibodies in combination with magnetic microbeads, using the automated CliniMACS device (Miltenyi Biotec, Bergisch Gladbach, Germany). The maximal contamination with αβT-cells for all dose levels was 5x105/kg. Three conditioning regimens have been investigated (I): fludarabine 120 mg/m2 + cyclophosfamide 4800 mg/m2, (II): fludarabine 120 mg/m2 + busilvex AUC=90 and (III): ATG (Genzyme®) 4 mg/m2 + fludarabine 120 mg/m2 + busilvex AUC=90 followed by αβT- cell depleted grafts from matched related or unrelated donors. Within cohort II and III, no additional immune suppression was given after allo-SCT. Results: Products for 14 patients have been successfully processed and used for αβT-cell depleted allo-SCT between 2011 and 2013. A ~4 log depletion of αβT-cells has been observed in the product with a recovery of ~75% of CD34+ cells. In cohort I and cohort II, 60% and 25% primary graft failures were observed, whereas in cohort III primary engraftment (chimerism > 95%) was observed in all patients. The combination of ATG/fludarabine/busilvex was well tolerated with a hematological recovery of within 3 weeks. In all 14 patients immune reconstitution primarily consisted of innate cells (NK cells and γδ T cells) the first 6 months post transplantation. In addition, no increase in CMV or EBV reactivations has been observed so far under the profound “innate control”. Conclusion: ATG Busulfan Fludarabine is a low toxicity platform for abTCR-depleted transplantations, resulting in a swift reconstitution of innate cells (NK cells and γδ T cells) the first 6 months post transplantation. This transplantation strategy can serve as a tool for future immunological interventions such as a low dose DLI or genetically modified T cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 852-852
Author(s):  
Peter Lang ◽  
Tobias Feuchtinger ◽  
Heiko-Manuel Teltschik ◽  
Wolfgang Schwinger ◽  
Patrick Schlegel ◽  
...  

Abstract Transplantation of haploidentical stem cells has become an accepted option for pediatric patients and adults with high risk malignancies who lack a matched related or unrelated donor. In recent years, the majority of pediatric transplant centers chose the CD34 positive selection of peripheral stem cells, which allowed minimizing GvHD by effective reduction of T cells in the graft. However, infectious complications caused by delayed immune recovery were a major reason for transplant related mortality (TRM). In order to improve the immune recovery, we have established a new T-cell depletion method which removes αβ+ T-lymphocytes via a biotinylated anti-TcRαβ antibody followed by an anti-biotin antibody conjugated to magnetic microbeads while retaining γδ+ T-lymphocytes, natural killer (NK) cells and other cells in the graft. In addition, CD19+ B-lymphocytes were concomitantly depleted for the prevention of post-transplant EBV-associated lymphoproliferative disease. Immune recovery was retrospectively analyzed in a cohort of 41 patients with acute leukemia, MDS and non-malignant diseases, who received αβ T and B cell depleted allografts from haploidentical family donors. Conditioning regimens consisted of fludarabine or clofarabine, thiotepa, melphalan and serotherapy with OKT3 or ATG-Fresenius®. Graft manipulation was carried out with anti TCRαβ and anti CD19 antibodies and immunomagnetic microbeads. γδ T cells and NK cells remained in the grafts. Primary engraftment occurred in 88%, acute graft versus host disease (aGvHD) grade II and III-IV occurred in 10% and 15%. Immune recovery data were available in 26 patients and comparable after OKT3 (n=7) or ATG-F® (n=19). Median time to reach > 100 CD3+/µl, > 200 CD19+ cells/µl and > 200 CD56+ cells/µl for the whole group was 13, 127 and 12.5 days. Compared to a historical control group of patients with CD34 positive selected grafts, significantly higher cell numbers were found for CD3+ at days +30 and +90 (267 vs. 27 and 397 vs. 163 cells/µl), for CD3+4+ at day +30 (58 vs. 11 cells/µl) and for CD56+ at day +14 (622 vs. 27 cells/µl). The clinical impact of this accelerated immune recovery will be evaluated in an ongoing prospective multi-center trial. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21004-e21004
Author(s):  
Tomoharu Sugie ◽  
Kaoru Murata-Hirai ◽  
Masashi Iwasaki ◽  
Craig T Morita ◽  
Wen Li ◽  
...  

e21004 Background: Human γδ T cells display potent cytotoxicity against various tumor cells pretreated with zoledronic acid (Zol). Zol has shown benefits when added to adjuvant endocrine therapy for patients with early-stage breast cancer or to standard chemotherapy for patients with multiple myeloma. Although γδ T cells may contribute to this additive effect, the responsiveness of γδ T cells from early-stage breast cancer patients has not been fully investigated. In this study, we determined the number, frequency, and responsiveness of Vγ2Vδ2 T cells from early- and late-stage breast cancer patients and examined the effect of IL-18 on their ex vivo expansion. Methods: Breast cancer patients (n=80) were enrolled after institutional review board approval and with written informed consent. Peripheral blood mononuclear cells (PBMC) were purified and stimulated with Zol/IL-2 or Zol/IL-2/IL-18 for 2 to 10 days. The expanded cells were assessed on flow cytometry and the production of IFN-γ and TNF-α measured through ELISA. Results: The responsiveness of Vγ2Vδ2 T cells from patients with low frequencies of Vγ2Vδ2 T cells was significantly diminished. IL-18, however, enhanced ex vivo proliferative responses of Vγ2Vδ2T cells and helper NK cells (CD3-CD56brightCD11c+CD14-CD16+NKGD2+NKp44low) from patients with either low or high frequencies of Vγ2Vδ2 T cells. Cell-to-cell contact between γδ T and helper NK cells appeared to promote expansion of γδ T cells. Exogenous IL-18 markedly enhanced IFN-γ and TNF-α production from PBMC stimulated by Zol/IL-2, whereas the addition of an anti-IL-18Rα mAb reduced cytokine production. Conclusions: These results demonstrate that Zol elicits immunological responses by γδ T cells from early-stage breast cancer patients and IL-18 enhances proliferative responses and effector functions of γδ T cells in the context of helper NK cells.


Sign in / Sign up

Export Citation Format

Share Document