scholarly journals Probiotics, gut microbiota, and their influence on host health and disease

2016 ◽  
Vol 61 (1) ◽  
pp. 1600240 ◽  
Author(s):  
Borja Sánchez ◽  
Susana Delgado ◽  
Aitor Blanco-Míguez ◽  
Anália Lourenço ◽  
Miguel Gueimonde ◽  
...  
2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2020 ◽  
Vol 21 (10) ◽  
pp. 3688 ◽  
Author(s):  
Pamela Vernocchi ◽  
Federica Del Chierico ◽  
Lorenza Putignani

The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Xi ◽  
Xinxi Qin ◽  
Yumin Song ◽  
Jincheng Han ◽  
Zhiqiang Li ◽  
...  

The structure and composition of gut microbiota correlate with the occurrence and development of host health and disease. Diarrhea can cause alterations in gut microbiota in animals, and the changes in the gut microbial structure and composition may affect the development of diarrhea. However, there is a scarcity of information on the effects of diarrhea on gut fungal composition and structure, particularly in Baer's pochard (Aythya baeri). The current study was performed for high-throughput sequencing of the fungal-specific internal transcribed spacer 1 (ITS-1) to detect the differences of gut mycobiota in healthy and diarrheal Baer's pochard. Results showed that the gut mycobiota not only decreased significantly in diversity but also in structure and composition. Statistical analysis between two groups revealed a significant decrease in the abundance of phylum Rozellomycota, Zoopagomycota, Mortierellomycota, and Kickxellomycota in diarrheal Baer's pochard. At the genus levels, fungal relative abundance changed significantly in 95 genera, with 56 fungal genera, such as Wickerhamomyces, Alternaria, Penicillium, Cystofilobasidium, and Filobasidium, increasing significantly in the gut of the diarrheal Baer's pochard. In conclusion, the current study revealed the discrepancy in the gut fungal diversity and community composition between the healthy and diarrheal Baer's pochard, laying the basis for elucidating the relationship between diarrhea and the gut mycobiota in Baer's pochard.


mSystems ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Marius Vital ◽  
André Karch ◽  
Dietmar H. Pieper

ABSTRACT Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis. Given the key role of butyrate for host health, understanding the ecology of intestinal butyrate-producing communities is a top priority for gut microbiota research. To this end, we performed a pooled analysis on 2,387 metagenomic/transcriptomic samples from 15 publicly available data sets that originated from three continents and encompassed eight diseases as well as specific interventions. For analyses, a gene catalogue was constructed from gene-targeted assemblies of all genes from butyrate synthesis pathways of all samples and from an updated reference database derived from genome screenings. We demonstrate that butyrate producers establish themselves within the first year of life and display high abundances (>20% of total bacterial community) in adults regardless of origin. Various bacteria form this functional group, exhibiting a biochemical diversity including different pathways and terminal enzymes, where one carbohydrate-fueled pathway was dominant with butyryl coenzyme A (CoA):acetate CoA transferase as the main terminal enzyme. Subjects displayed a high richness of butyrate producers, and 17 taxa, primarily members of the Lachnospiraceae and Ruminococcaceae along with some Bacteroidetes, were detected in >70% of individuals, encompassing ~85% of the total butyrate-producing potential. Most of these key taxa were also found to express genes for butyrate formation, indicating that butyrate producers occupy various niches in the gut ecosystem, concurrently synthesizing that compound. Furthermore, results from longitudinal analyses propose that diversity supports functional stability during ordinary life disturbances and during interventions such as antibiotic treatment. A reduction of the butyrate-producing potential along with community alterations was detected in various diseases, where patients suffering from cardiometabolic disorders were particularly affected. IMPORTANCE Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis.


2018 ◽  
Vol 23 (6) ◽  
pp. 705-715 ◽  
Author(s):  
Kassem Makki ◽  
Edward C. Deehan ◽  
Jens Walter ◽  
Fredrik Bäckhed

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Meihong Li ◽  
Wei-Dong Chen ◽  
Yan-Dong Wang

Abstract The gut microbiota regulates the biological processes of organisms acting like ‘another’ genome, affecting the health and disease of the host. MicroRNAs, as important physiological regulators, have been found to be involved in health and disease. Recently, the gut microbiota has been reported to affect host health by regulating host miRNAs. For example, Fusobacterium nucleatum could aggravate chemoresistance of colorectal cancer by decreasing the expression of miR-18a* and miR-4802. What’s more, miRNAs can shape the gut microbiota composition, ultimately affecting the host's physiology and disease. miR-515-5p and miR-1226-5p could promote the growth of Fusobacterium nucleatum (Fn) and Escherichia coli (E.coli), which have been reported to drive colorectal cancer. Here, we will review current findings of the interactions between the gut microbiota and microRNAs and discuss how the gut microbiota–microRNA interactions affect host pathophysiology including intestinal, neurological, cardiovascular, and immune health and diseases.


2019 ◽  
Vol 36 (4) ◽  
pp. 593-625 ◽  
Author(s):  
Lauren J. Rajakovich ◽  
Emily P. Balskus

Metalloenzymes play central roles in metabolic functions of the human gut microbiota that are associated with host health and disease.


2021 ◽  
Vol 22 (7) ◽  
pp. 3715
Author(s):  
Kamila Kasprzak-Drozd ◽  
Tomasz Oniszczuk ◽  
Mateusz Stasiak ◽  
Anna Oniszczuk

The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Sign in / Sign up

Export Citation Format

Share Document