scholarly journals Gut Microbial Alterations in Diarrheal Baer's Pochards (Aythya baeri)

2021 ◽  
Vol 8 ◽  
Author(s):  
Li Xi ◽  
Xinxi Qin ◽  
Yumin Song ◽  
Jincheng Han ◽  
Zhiqiang Li ◽  
...  

The structure and composition of gut microbiota correlate with the occurrence and development of host health and disease. Diarrhea can cause alterations in gut microbiota in animals, and the changes in the gut microbial structure and composition may affect the development of diarrhea. However, there is a scarcity of information on the effects of diarrhea on gut fungal composition and structure, particularly in Baer's pochard (Aythya baeri). The current study was performed for high-throughput sequencing of the fungal-specific internal transcribed spacer 1 (ITS-1) to detect the differences of gut mycobiota in healthy and diarrheal Baer's pochard. Results showed that the gut mycobiota not only decreased significantly in diversity but also in structure and composition. Statistical analysis between two groups revealed a significant decrease in the abundance of phylum Rozellomycota, Zoopagomycota, Mortierellomycota, and Kickxellomycota in diarrheal Baer's pochard. At the genus levels, fungal relative abundance changed significantly in 95 genera, with 56 fungal genera, such as Wickerhamomyces, Alternaria, Penicillium, Cystofilobasidium, and Filobasidium, increasing significantly in the gut of the diarrheal Baer's pochard. In conclusion, the current study revealed the discrepancy in the gut fungal diversity and community composition between the healthy and diarrheal Baer's pochard, laying the basis for elucidating the relationship between diarrhea and the gut mycobiota in Baer's pochard.

2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2019 ◽  
Vol 14 (1) ◽  
pp. 288-298
Author(s):  
Siyue Zhao ◽  
Caiwu Li ◽  
Guo Li ◽  
Shengzhi Yang ◽  
Yingming Zhou ◽  
...  

AbstractThe giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.


2020 ◽  
Vol 21 (10) ◽  
pp. 3688 ◽  
Author(s):  
Pamela Vernocchi ◽  
Federica Del Chierico ◽  
Lorenza Putignani

The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.


2021 ◽  
Author(s):  
Xinyue Zhang ◽  
Kun Guo ◽  
Linjing Shi ◽  
Ting Sun ◽  
Songmei Geng

Abstract Background: Psoriasis is an inflammatory skin disease associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to affect both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the fecal microbial composition of patients with psoriasis compared with healthy individuals to unravel the microbiota profiling in this autoimmune disease.Results: We collected fecal samples from 30 psoriasis patients and 30 healthy controls, sequenced them by 16S rRNA high-throughput sequencing, and identified the gut microbial composition using bioinformatic analyses including Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals, including Faecalibacterium and Megamonas, were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the dialister. The relative abundance of Phascolarctobacterium and dialister can be regard as predictors of psoriasis activity. The correlation analysis based on microbiota and Inflammation-related indicators showed that microbiota dysbiosis might induce an abnormal immune response in psoriasis. Conclusions: We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved.


Author(s):  
Natalia Di Tommaso ◽  
Antonio Gasbarrini ◽  
Francesca Romana Ponziani

The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of ‘leaky gut syndrome’ and ‘gut dysbiosis’, which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.


2020 ◽  
Author(s):  
Longxian Lv ◽  
Silan Gu ◽  
Huiyong Jiang ◽  
Ren Yan ◽  
Yanfei Chen ◽  
...  

Abstract The relationship between gut microbes and COVID-19 or H1N1 flu is not fully understood. Here, we compared gut mycobiota of 67 COVID-19 patients, 35 H1N1 patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing. Fungal richness decreased in COVID-19 and H1N1 patients compared to HCs, but fungal diversity decreased in only H1N1 patients. Fungal mycobiota dysbiosis in both COVID-19 and H1N1 patients was mainly characterized by depletions of fungi such as Aspergillus, Penicillium, but several fungi, such as Candida parapsilosis, and Malassezia yamatoensis, were enriched in H1N1 patients. The altered fungal taxa were strongly associated with clinical features such as the incidence of diarrhoea, albumin. Gut mycobiota between COVID-19 patients with mild and severity symptoms are not different, as well as between COVID-19 patients in and out hospital. Therefore, gut mycobiota dysbiosis occur in covid-19 or H1N1 patients and do not improve until discharge.


2020 ◽  
Author(s):  
Tuoyu He ◽  
Yun Jiang ◽  
Pengpeng Wang ◽  
Jianguo Xiang ◽  
Wangcheng Pan

AbstractThe composition and abundance of gut microbiota is essential for host health and immunity. Gut microbiota is symbiotic with the host, so changes in the host diet, development, and health will lead to changes in the gut microbiota. Conversely, changes in the gut microbiota also affect the host conditions. In this experiment, 16S rRNA high-throughput sequencing was used to compare the gut microbiota composition of 5 healthy Paa Spinosa and 6 P. spinosa with rotten-skin disease. Results: the gut microbiota composition was significant difference between diseased P. spinosa and the healthy P. spinosa; LEfSe analysis showed that the relative abundance of Methanocorpusculum, Parabacteroides, AF12, PW3, Epulopiscium, and Oscillospira were significantly higher in the diseased P. spinosa, while the relative abundance of Serratia, Eubacteium, Citrobacter, and Morganella were significantly lower. Conclusion: Rotten-skin disease changed P. spinosa gut microbiota significantly; The relative abundance of Epulopiscium and Oscillospira might be related to the health conditions of the host skin and gallbladder; The relative abundance of Serratia and Eubacteium might be important for maintaining the gut microbiota ecosystem.


2020 ◽  
Vol 29 ◽  
pp. 105-109
Author(s):  
J Tian ◽  
J Du ◽  
J Han ◽  
Z Wang ◽  
Z Fu ◽  
...  

Rescuing seal pups is an important conservation action for spotted seals Phoca largha. Gut microbiota are directly associated with host health and diet metabolism. Therefore, knowledge gained from gut microbiota variations of spotted seal pups held in captivity after rescue can help formulate comprehensive rescue plans for the future. In this study, we collected feces from a rescued spotted seal pup every 3 d during the rescue process. Fecal bacterial communities were measured by high-throughput sequencing based on 16S rRNA amplification. Firmicutes were the most dominant bacteria, comprising >70% of the total gut microbiota. Moreover, differences in fecal bacterial communities of the rescued spotted seal pup between rescue and release were compared. At release, the abundances of 2 potential bacteria related to gut health, Blautia producta and Cetobacterium somerae, were remarkably lower, while Clostridium perfringens, a key mammalian pathogen, was significantly higher in the feces of the released pup. Moreover, the pup experienced a bout of diarrhea during its time in captivity, which resulted in a momentary change in its gut microbiota. Fusobacterium was recognized as a potential causative pathogen for the diarrhea. This study contributes to our understanding of gut microbiota variations in spotted seal pups during the rescue period.


mSystems ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Marius Vital ◽  
André Karch ◽  
Dietmar H. Pieper

ABSTRACT Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis. Given the key role of butyrate for host health, understanding the ecology of intestinal butyrate-producing communities is a top priority for gut microbiota research. To this end, we performed a pooled analysis on 2,387 metagenomic/transcriptomic samples from 15 publicly available data sets that originated from three continents and encompassed eight diseases as well as specific interventions. For analyses, a gene catalogue was constructed from gene-targeted assemblies of all genes from butyrate synthesis pathways of all samples and from an updated reference database derived from genome screenings. We demonstrate that butyrate producers establish themselves within the first year of life and display high abundances (>20% of total bacterial community) in adults regardless of origin. Various bacteria form this functional group, exhibiting a biochemical diversity including different pathways and terminal enzymes, where one carbohydrate-fueled pathway was dominant with butyryl coenzyme A (CoA):acetate CoA transferase as the main terminal enzyme. Subjects displayed a high richness of butyrate producers, and 17 taxa, primarily members of the Lachnospiraceae and Ruminococcaceae along with some Bacteroidetes, were detected in >70% of individuals, encompassing ~85% of the total butyrate-producing potential. Most of these key taxa were also found to express genes for butyrate formation, indicating that butyrate producers occupy various niches in the gut ecosystem, concurrently synthesizing that compound. Furthermore, results from longitudinal analyses propose that diversity supports functional stability during ordinary life disturbances and during interventions such as antibiotic treatment. A reduction of the butyrate-producing potential along with community alterations was detected in various diseases, where patients suffering from cardiometabolic disorders were particularly affected. IMPORTANCE Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document