Combined use of a synthetic trail pheromone and insecticidal bait provides effective control of an invasive ant

2011 ◽  
Vol 67 (10) ◽  
pp. 1230-1236 ◽  
Author(s):  
Eiriki Sunamura ◽  
Shun Suzuki ◽  
Koji Nishisue ◽  
Hironori Sakamoto ◽  
Megumi Otsuka ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuefang Zheng ◽  
Yujing Zhu ◽  
Jieping Wang ◽  
Ziran Wang ◽  
Bo Liu

AbstractTomato bacterial wilt (BW) caused by Ralstonia solanacearum seriously restricts tomato production and no effective control measures are available. A microbial restoration substrate (MRS) had been proved to be effective control of tomato BW in a greenhouse cultivation. In this study, MRS was combined with an avirulent Ralstonia solanacearum (aRS) strain to control the disease under an open field condition. In the two consecutive year (2017 and 2018) trials, the combined use of aRS and MRS resulted in better disease control compared with either aRS or MRS alone. Moreover, the combined treatment was more effective than expected and suggesting a synergistic control effect. Compared with control (CK, non-aRS or MRS), the application of aRS and MRS treatments alone or in combination could all promote plant growth, increase root activity and yield (e.g. the yield for the treatment of aRS + MRS increased by 463.64% in 2017). Soil nutrients, including soil organic carbon, total nitrogen, total phosphorus and total potassium contents were also significantly increased by the application of aRS and MRS treatments alone or in combination (P < 0.05). The application of MRS or in combination with aRS changed the soil from acidic to neutral, which is one of the key factors for controlling BW. The soil enzymatic activities were notably influenced by the combined use of aRS and MRS, which increased urease (87.37% in 2017 and 60.89% in 2018), catalase (93.67% in 2017 and 279.37% in 2018) and alkaline phosphatase activities (193.77% in 2017 and 455.73% in 2018). These results suggest that the combination of MRS and aRS could effectively control tomato BW and thus represents a promising new tool to control this disease.


Author(s):  
Juan García-de-Lomas ◽  
Elías D. Dana ◽  
Rubén González

The red swamp crayfish Procambarus clarkii is the most widespread invasive crayfish in Europe, and responsible for a plethora of negative impacts on aquatic ecosystems. Most capture methods used for controlling crayfish populations have a bias towards the capture of adults, however, the removal of the young-of-the-year crayfish (YOY) may be essential for achieving effective control of invasive populations. This paper analysed the crayfish caught during a management campaign carried out in five permanent stream pools from southern Spain. We compared size structure, CPUE and sex-ratio obtained with two control methods: cylindrical traps (a method commonly used in crayfish management) and horizontal hauls using a fine-mesh net (inspired by zooplankton sampling techniques). Horizontal hauls showed a higher selectivity for catching YOY and higher efficiency (eight-fold) than traps. The combined use of both gears increased total catch by 46%. Our results suggest that YOY may be sharply underestimated if only cylindrical traps are used. The YOY cohort represented 60% of the total catch during the management campaign. Therefore, active netting with a fine mesh may be a complementary method to the use of traps in order to manage invasive populations of P. clarkii and may provide a better understanding of the structure and dynamics of invasive crayfish populations.


Author(s):  
Francesco Tedesco ◽  
Domenico Famularo ◽  
Giuseppe Franzè

In this paper, a resilient distributed control scheme against covert attacks for multi-agent networked systems subject to input and state constraints is developed. The idea consists in a clever deployment of predictive arguments with a twofold aim: detection of malicious agent behaviors affecting the normal system operations and consequent specific control actions implementation to mitigate as much as possible undesirable knock-on effects resulting from adversary actions. Specifically, the multi-agent system is organized in terms of a grid topology and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to recognize the attacked agent. In essence, the resulting solution relies on the combined use of predictive control and set-invariance ideas that are exploited to generate redundant control sequences randomly selected on the actuator side such that the malicious agent is never aware about the effective control action indeed exploited. As a consequence, countermeasures on the sensor-to-controller channel could lead to significantly erroneous data not complying with the expected evolution of the system modeling. Finally, numerical simulations are carried out to show benefits and effectiveness of the proposed approach.


2020 ◽  
Vol 94 ◽  
Author(s):  
J.A.C. Lima ◽  
C.M. Ferraz ◽  
M.R.d.A. Lima ◽  
H.L.A. Genier ◽  
F.E.d.F. Soares ◽  
...  

Abstract The aim of this study was to evaluate the combined use of different chemical (albendazole, ivermectin, glycerine and Vaseline) and biological (Monacrosporium thaumasium) compounds in the control of Ancylostoma caninum. Infective larvae of A. caninum were obtained from coprocultures of positive faeces from naturally infected dogs. We used 1% ivermectin, 1% albendazole, 100% glycerine, 100% Vaseline and an isolate of the nematophagous fungus M. thaumasium (NF34), alone or in combinations. Next, an experimental test was set up with 16 groups in microtubes, with a 24-h interaction. The groups (G1 to G15) that contained any chemical or biological compound (NF34) and/or their combined use (chemical + biological) showed a difference in relation to the control group, except G5 – Vaseline 100% without combinations. It was concluded that, even on an experimental basis, the combined use of anthelmintic drugs with biological control was efficient; however, more studies must be carried out in order to elucidate the synergistic action between chemical and biological compounds to be used in the effective control of hookworms in the future.


Author(s):  
H.M. Mazzone ◽  
G. Wray ◽  
R. Zerillo

The fungal pathogen of the Dutch elm disease (DED), Ceratocystis ulmi (Buisman) C. Moreau, has eluded effective control since its introduction in the United States more than sixty years ago. Our studies on DED include establishing biological control agents against C. ulmi. In this report we describe the inhibitory action of the antibiotic polymyxin B on the causal agent of DED.In screening a number of antibiotics against C. ulmi, we observed that filter paper discs containing 300 units (U) of polymyxin B (Difco Laboratories) per disc, produced zones of inhibition to the fungus grown on potato dextrose agar or Sabouraud agar plates (100mm x 15mm), Fig. 1a. Total inhibition of fungal growth on a plate occurred when agar overlays containing fungus and antibiotic (polymyxin B sulfate, ICN Pharmaceuticals, Inc.) were poured on the underlying agar growth medium. The agar overlays consisted of the following: 4.5 ml of 0.7% agar, 0.5 ml of fungus (control plate); 4.0 ml of 0.7% agar, 0.5 ml of fungus, 0.5 ml of polymyxin B sulfate (77,700 U). Fig. 1, b and c, compares a control plate and polymyxin plate after seven days.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


2009 ◽  
Vol 29 (04) ◽  
pp. 376-380 ◽  
Author(s):  
D. Capodanno ◽  
D. J. Angiolillo

SummaryDespite the clinical benefit associated with the combined use of aspirin and clopidogrel in patients with acute coronary syndrome or those undergoing percutaneous coronary intervention, a considerable interindividual variability in response to these drugs have been consistently reported. There is a growing interest on applying platelet functional tests with the goal of identifying patients at increased risk of recurrent ischaemic events and potentially tailoring antiplatelet treatment regimens.This manuscript will review the state of the art on the most commonly available platelet functional tests, describing their advantages and disadvantages and exploring their applicability in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document