EFFECT OF ELASTIC SUPPORTS ONTHE CRITICAL VALUE OF REYNOLDS NUMBERPAST A CYLINDER

Author(s):  
Sanjay Mittal ◽  
Saurav Singh
1998 ◽  
Vol 536 ◽  
Author(s):  
N. Ozaki ◽  
Y. Ohno ◽  
S. Takeda ◽  
M. Hirata

AbstractWe have grown Si nanowhiskers on a Si{1111} surface via the vapor-liquid-solid (VLS) mechanism. The minimum diameter of the crystalline is 3nm and is close to the critical value for the effect of quantum confinement. We have found that many whiskers grow epitaxially or non-epitaxially on the substrate along the 〈112〉 direction as well as the 〈111〉 direction.In our growth procedure, we first deposited gold on a H-terminated Si{111} surface and prepared the molten catalysts of Au and Si at 500°C. Under the flow of high pressure silane gas, we have succeeded in producing the nanowhiskers without any extended defects. We present the details of the growth condition and discuss the growth mechanism of the nanowhiskers extending along the 〈112〉 direction.


Author(s):  
Alfonso Sorrentino

This chapter discusses the notion of action-minimizing orbits. In particular, it defines the other two families of invariant sets, the so-called Aubry and Mañé sets. It explains their main dynamical and symplectic properties, comparing them with the results obtained in the preceding chapter for the Mather sets. The relation between these new invariant sets and the Mather sets is described. As a by-product, the chapter introduces the Mañé's potential, Peierls' barrier, and Mañé's critical value. It discusses their properties thoroughly. In particular, it highlights how this critical value is related to the minimal average action and describes these new concepts in the case of the simple pendulum.


2015 ◽  
Vol 5 (1) ◽  
pp. 606-620
Author(s):  
Mahtali Sbih ◽  
Zoubeir BENSID ◽  
Zohra BOUNOUARA ◽  
Fouad DJAIZ ◽  
Youcef FERRAG

The goal of fertilization is to meet the nutritional needs of plants by completing the supply of soil nutrients in an economically profitable and environmentally friendly. Achieving on-farm optimum economic crop yields of marketable quality with minimum adverse environmental impact requires close attention to fertilization guide. The recommendations seek to do this by ensuring that the available supply of plant nutrients in soil is judiciously supplemented by additions of nutrients in fertilizers. The objective is that crops must have an adequate supply of nutrients, and many crops show large and very profitable increases in yield from the correct use of fertilizers to supply nutrients. The main objective of this work is to establishing a reference guide of fertilization of vegetable crops and cereal in Algeria. To meet this objective, we have processes in two steps: 1) Establishment of theoretical fertilizer recommendation from international guide of crop fertilization; 2) Validation of these developed theoretical fertilizer recommendation by trials in the fields. Sixteen fertilization guides of vegetable crops from the Canadian provinces (5 guides), USA (10 guides) and countries of northern Europe England (1 guide). Generally, the rating of these recommendation is ranging from poor soil to soil exceedingly rich; however, the numbers of fertility classes are very different. Indeed, Quebec Ontario, Minnesota, Wisconsin New England, Maryland and Kentucky and Florida guides are subdivided into 5 fertility classes, ranging from poor soil to soil exceedingly rich. The recommendation of New Brunswick and Manitoba contain six classes. The recommendation of Michigan, Nova Scotia and England contain 10 and 7 fertility classes respectively. The recommendation fertilizer of New York and New Jersey have 3classes. Unlike the systems of fertilization recommendation mentioned above, the recommendation fertilizer of Pennsylvania is based on continuous models of P, K and contains 34 classes for P and 22 classes K. Then we standardized the P soil analysis with conversion equations (Olsen method) and units of measurement (kg/ha, mg/kg…).Following this procedure we transformed discontinued systems of fertility classes in to continuous models to facilitate comparison between the different fertilization recommendation models in one hand, in other hand to obtain critical value (CV).Finally, we used statistics of the conditional expectation in order to generate the theoretical recommendation fertilization guide of fertilization with 7 fertility classes (VL, L, M, MH, OP, H and VH). The next step was calibrating soil tests against yield responses to applied nutrient in field experiments. A database (not published data) from agriculture and agri-food Canada, were used. Production of pumpkin responded positively and significantly to P or K soil fertility levels, increases being observed with P more often than with K. According to the Cate-Nelson methods, the critical value of Olsen-P in the top 20 cm of soil was about 25 mg/kg: at values of greater than or equal to 25 mg/kg, crops achieved about 80% of their maximal yield in the absence of fertilizer application. The CV of K in soil for this crop was about 140 mg/kg. The CV found was very close to this generated by the theoretical method for recommendation of fertilization guide. Finally, we used the procedure of Cope and Rouse in both sides of the CV in order to make subdivisions of different groups of soil fertility. One calibrates the soil-test value against yield response to tile nutrient to predict fertilizer requirement.


2020 ◽  
Vol 16 (5) ◽  
pp. 966-979
Author(s):  
O.B. Sheveleva ◽  
E.V. Slesarenko

Subject. The article deals with the security of the fiscal and budgetary system in resource-based regions during highly volatile prices in the global energy market external economic, political, technological and epidemiological shocks. Objectives. The study is to detect hazards in the fiscal and budgetary system of resource-based regions. Such hazards really put the regional competitiveness and economic security at peril. Methods. The article evaluates the security of the fiscal system in the Kemerovo Oblast through the integral indicator and the threshold (critical) value. Results. We found key threats to the fiscal and budgetary system of the Kemerovo Oblast, which undermine the regional competitiveness and economic security. Conclusions and Relevance. Authorities shall comprehensively attempt to create the environment for developing manufacturing sectors in the region, especially science-intensive and high-tech production enterprises by alleviating infrastructure and administrative constraints for business, raising the finance of science and innovation from the State and mobilize investors' resources, lure them to finance prioritized lines of the regional economic development. The findings and conclusions can be used to outline principles of the region's economic policy, socioeconomic development strategies of the region economy.


Author(s):  
Gabriella Nehemy ◽  
Paulo Gonçalves ◽  
EDSON CAPELLO SOUSA

1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2020 ◽  
Vol 39 (1) ◽  
pp. 189-199
Author(s):  
Longbiao Li

AbstractIn this paper, the temperature-dependent matrix multicracking evolution of carbon-fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) is investigated. The temperature-dependent composite microstress field is obtained by combining the shear-lag model and temperature-dependent material properties and damage models. The critical matrix strain energy criterion assumes that the strain energy in the matrix has a critical value. With increasing applied stress, when the matrix strain energy is higher than the critical value, more matrix cracks and interface debonding occur to dissipate the additional energy. Based on the composite damage state, the temperature-dependent matrix strain energy and its critical value are obtained. The relationships among applied stress, matrix cracking state, interface damage state, and environmental temperature are established. The effects of interfacial properties, material properties, and environmental temperature on temperature-dependent matrix multiple fracture evolution of C/SiC composites are analyzed. The experimental evolution of matrix multiple fracture and fraction of the interface debonding of C/SiC composites at elevated temperatures are predicted. When the interface shear stress increases, the debonding resistance at the interface increases, leading to the decrease of the debonding fraction at the interface, and the stress transfer capacity between the fiber and the matrix increases, leading to the higher first matrix cracking stress, saturation matrix cracking stress, and saturation matrix cracking density.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1076
Author(s):  
Wei Lo ◽  
Chun-Ming Yang ◽  
Kuei-Kuei Lai ◽  
Shao-Yu Li ◽  
Chi-Han Chen

When all of the one-sided specification indices of each quality characteristic reach the requirements of the process quality level, they can ensure that the process capability of the product meets the requirements of the process quality level. This study constructs a fuzzy membership function based on the upper confidence limit of the index, derives the fuzzy critical value, and then labels the fuzzy critical value on the axis of the visualized radar chart as well as connects adjacent critical points to shape a regular polygonal critical region. Next, this study calculates the observed value of the index to estimate and mark it on the axis for forming a visualized fuzzy radar evaluation chart. Obviously, this fuzzy evaluation model not only reduces the testing cost but also makes the quality level quickly meet the requirements of the specifications. Further, the radar chart can reduce the risk of misjudgment attributable to sampling errors and help improve the accuracy of evaluation by a confidence-upper-limit-based fuzzy evaluation model. Therefore, this easy-to-use visualized fuzzy radar evaluation chart is used as an evaluation interface, which has good and convenient management performance to identify and improve critical-to-quality quickly. Improving the quality of the process before the product is completed will also have the advantage of reducing social losses and environmental damage costs.


2005 ◽  
Vol 2005 (23) ◽  
pp. 3727-3737 ◽  
Author(s):  
Jitender Singh ◽  
Renu Bajaj

Effect of an axially applied magnetic field on the stability of a ferrofluid flow in an annular space between two coaxially rotating cylinders with nonaxisymmetric disturbances has been investigated numerically. The critical value of the ratioΩ∗of angular speeds of the two cylinders, at the onset of the first nonaxisymmetric mode of disturbance, has been observed to be affected by the applied magnetic field.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document