Cell Cycle Analysis Using In Vivo Staining of DNA-Synthesizing Cells

Author(s):  
Petr Páral ◽  
Martin Báječný ◽  
Filipp Savvulidi ◽  
Emanuel Nečas
1993 ◽  
Vol 43 (6) ◽  
pp. 313-319 ◽  
Author(s):  
Yukiko Hayashi ◽  
Masashi Fukayama ◽  
Morio Koike ◽  
Shizuka Kaseda ◽  
Takaaki Ikeda ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi Qiao ◽  
Jinfeng Li ◽  
Hongwei Kou ◽  
Xiangrong Chen ◽  
Deming Bao ◽  
...  

Objective: Osteosarcoma is the most common malignancy in the skeletal system; studies showed an important role of miRNAs in tumorigenesis, indicating miRNAs as possible therapeutic molecules. This study found abnormal hsa-miR-557 expression levels in osteosarcoma and tried to explore the potential function and the mechanism.Methods: Differential expression genes of osteosarcoma were analyzed using GSE28423 from the GEO database. Survival analysis of miRNAs was conducted with data obtained from the TARGET-OS database. STRING and miRDIP were used to predict target genes of hsa-miR-557; KRAS was then verified using dual-luciferase reporter assay. Expression of genes was detected by qPCR, and levels of proteins were detected by Western blot. The proliferation ability of cells was detected by CCK-8 and cell cycle analysis. Tumor formation assay in nude mice was used to detect the influence of osteosarcoma by hsa-miR-557 in vivo.Results: Analysis from the GEO and TARGET databases found 12 miRNAs that are significantly related to the osteosarcoma prognosis, 7 downregulated (hsa-miR-140-3p, hsa-miR-564, hsa-miR-765, hsa-miR-1224-5p, hsa-miR-95, hsa-miR-940, and hsa-miR-557) and 5 upregulated (hsa-miR-362-3p, hsa-miR-149, hsa-miR-96, hsa-miR-744, and hsa-miR-769-5p). CCK-8 analysis and cell cycle analysis found that hsa-miR-557 could significantly inhibit the proliferation of osteosarcoma cells. The tumor formation assay in nude mice showed that tumor sizes and weights were inhibited by hsa-miR-557 transfection. Further studies also proved that hsa-miR-557 could target the 3′UTR of KRAS and modulate phosphorylation of downstream proteins.Conclusion: This study showed that hsa-miR-557 could inhibit osteosarcoma growth both in vivo and in vitro, by modulating KRAS expression.


2020 ◽  
Vol 16 ◽  
Author(s):  
Jamshed Iqbal ◽  
Ayesha Basharat ◽  
Sehrish Bano ◽  
Syed Mobasher Ali Abid ◽  
Julie Pelletier ◽  
...  

Aims: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5′-NT). Background: CD73 (ecto-5′-NT) represents the most significant class of ecto-nucleotidases which are mainly responsible for dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity. Objective: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated. Methods: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5′-NT) by the malachite green assay and their cytotoxic effect was investigated on HeLa cell line using MTT assay. Secondly, most potent compound was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot. Results: Among all compounds, 3h, 3e, 3b, and 3c were found the most active against rat-ecto-5′-NT (CD73) enzyme with IC50 (µM) values of 0.70 ± 0.06 µM, 0.87 ± 0.05 µM, 0.39 ± 0.02 µM and 0.33 ± 0.03 µM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compound 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 µM and 86.02 ± 7.11 µM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis which showed promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on expression of CD73 using qRT-PCR and western blot. Conclusion: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4H-chromen-3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as most potent compound. Additional expression studies conducted on HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus inhibiting the growth and proliferation of cancer cells.


Author(s):  
Thoria Diab ◽  
Tarek M. Mohamed ◽  
Alaa Hamed ◽  
Mohamed Gaber

Background: Chemotherapy is currently the most utilized treatment for cancer. Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest. The mechanisms of action of most organometallic complexes are poorly understood. Objective: This study was designed to explore the mechanisms governing the anti-proliferative effect of the free ligand N1,N6‐bis((2‐hydroxynaphthalin‐1‐yl)methinyl)) adipohydrazone (H2L) and its complexes of Mn(II), Co(II), Ni(II) and Cu(II). Methods: Cells were exposed to H2L or its metal complexes where cell viability determined by MTT assay. Cell cycle was analysed by flow cytometry. In addition, qRT-PCR was used to monitor the expression of Bax and Bcl-2. Moreover, molecular docking was carried out to find the potentiality of Cu(II) complex as an inhibitor of Adenosine Deaminase (ADA). ADA, Superoxide Dismutase (SOD) and reduced Glutathione (GSH) levels were measured in the most affected cancer cell line. Results: The obtained results demonstrated that H2L and its Cu(II) complex exhibited a strong cytotoxic activity compared to other complexes against HepG2 cells (IC50 = 4.14±0.036μM/ml and 3.2±0.02μM/ml), respectively. Both H2L and its Cu(II) complex induced G2/M phase cell cycle arrest in HepG2 cells. Additionally, they induced apoptosis in HepG2 cells via upregulation of Bax and downregulation of Bcl-2. Interestingly, the activity of ADA was decreased by 2.8 fold in HepG2 cells treated with Cu(II) complex compared to untreated cells. An increase of SOD activity and GSH level in HepG2 cells compared to control was observed. Conclusion: The results concluded that Cu(II) complex of H2L induced apoptosis in HepG2 cells. Further studies are needed to confirm its anti-cancer effect in vivo.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


2019 ◽  
Vol 18 (11) ◽  
pp. 1551-1562 ◽  
Author(s):  
Abbas Kabir ◽  
Kalpana Tilekar ◽  
Neha Upadhyay ◽  
C.S. Ramaa

Background: Cancer being a complex disease, single targeting agents remain unsuccessful. This calls for “multiple targeting”, wherein a single drug is so designed that it will modulate the activity of multiple protein targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication, Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the present work, we have tried to develop dual inhibitors of Top2 and CK2. Objective: With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve the anti-proliferative effects. Methods: Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis. Results: The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1 phase. Conclusion: We have successfully designed, synthesized, purified and structurally characterized 1- acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.


2020 ◽  
Vol 10 ◽  
Author(s):  
Amutha Santhanam ◽  
Naveen Kumar Chandrasekharan ◽  
Rajangam Ilangovan

Background: The occurrence of Cancer results in cellular changes that causes the uncontrolled growth and division of cells. Apoptosis removes cells during development and eliminates the potentially cancerous cells. The bioactive compounds present in the herbal plant shows cytotoxic activity that result in apoptosis. The traditional herbal plants are used world-wide both in allopathy and other traditional ways. Objective: The main objective of this study is to extract the bioactive compound Quercetin from the medicinally significant plant Ocimum sanctum and also to develop nanomedicine as Qu-PEG-NiGs. Materials and Methods: Leaf extract of the medicinally significant plant Ocimum sanctum (O. sanctum) has been used for the synthesis of nickel nanoparticles (NiGs) and extraction of quercetin (Qu). The ethanolic extract of Ocimum sanctum is added to 1 mM Nickel Nitrate (Ni(NO3)2) and stirred for 3 hrs at RT and dried at 60°C for 3hrs and calcinated at 400°C for 2hrs and characterized using Uv-Vis Spectrophotometer, FT-IR, SEM, DLS and Zeta potential. The Quercetin is isolated from Ocimum sanctum leaf extract using the reflux condenser method. The bio-polymer is being PEG-coated over NiGs and Quercetin is loaded into it. The apoptosis activity using MCF-7 cells is performed with Qu-PEG-NiGs. The purity of Quercetin is characterized using HPLC. In order to analyse apoptosis efficiency, MTT assay, Reactive Oxygen Species (ROS), Cell cycle analysis has been performed. Results: The NiGs absorption spectrum gives a peak at 408nm. The FT-IR confirms the presence of particular functional groups shifting from the compound NiGs and then coated with PEG-Qu-NiGs. The SEM images show the size of NiGs ranging from 27.3 nm to 40.4 nm with varied morphology such as hexagonal and other irregular shapes. The presence of Quercetin extracted from the leaf powder is approximately 1.5 mg/g. The ROS results show the Qu-PEG-NiGs induced efficiency of the apoptosis, while the increased concentrations promote ROS and lead to activation of the apoptosis. The cell cycle analysis has shown the cytotoxic effect. Conclusion: PEG-coated nickel nanoparticles can be used as a promising chemotherapeutic agent against MCF7 breast cancer cells. It is the evidence to further studies for evaluating Qu-PEG-NiGs anticancer activity on different types of cancer cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Sign in / Sign up

Export Citation Format

Share Document