Cementation in High Energy Mixer of ILW Surrogate Slurry. Demonstration of the Process at Semi-industrial Scale

Author(s):  
G. Cardinal ◽  
P. Regnard ◽  
E. Tronche ◽  
L. Donnet
Keyword(s):  
2018 ◽  
Vol 10 (5-6) ◽  
pp. 709-716 ◽  
Author(s):  
Vasileios Ramopoulos ◽  
Guido Link ◽  
Sergey Soldatov ◽  
John Jelonnek

AbstractA microwave design for an industrial scale applicator of a continuous microwave assisted depolymerization of polyethylene terephthalate (PET) has been developed. The cavity is designed for use in combination with an Archimedean screw pump to transport the reaction material, surrounded by a cylindrical pipe with a diameter of 250 mm and a length of 250 mm at the 2.45 GHz ISM band. The proposed design is modular and can be easily expanded for the heating of longer reactor tubes. Simulation results show that a homogeneous heating of the process material along the screw axis can be achieved by using a novel cavity design which is based on the TE1,0,x– rectangular waveguide cavity mode. The achieved design provides high energy efficiency with a reflected power of less than 10%. It is robust against changes in the permittivity of the reactants. The electromagnetic design is based on the dielectric properties of the solvolytic reaction mixture measured in the relevant temperature range. It is verified over the full range of the expected permittivities.


2021 ◽  
Vol 73 (2) ◽  
pp. 13-39
Author(s):  
Jarosław MARCISZ ◽  
Bogdan GARBARZ ◽  
Tymoteusz TOMCZAK ◽  
Aleksandra JANIK ◽  
Władysław ZALECKI ◽  
...  

The article contains results of research and analyses concerning application of nanostructured bainitic steel in the form of plates for manufacturing of armour components. The presented results of examination of microstructure and properties include a wide range of laboratory experiments and industrial tests, which resulted in the achievement of the assumed functional properties. In the period of 2017-2021, a scientific and industrial consortium consisting of Łukasiewicz – Institute of Ferrous Metallurgy (leader); WITPiS, Tarnów Mechanical Works, Alchemia and Heatmasters Poland carried out a project funded by the POIR 04.01.04 programme aimed to develop the design and to manufacture an observation and protective container with a specified resistance to penetration by armour-piercing projectiles and with a lower mass of steel armouring in relation to that currently produced. The aim of the project was achieved by using armour plates made of nanostructured bainitic steel (nanobainitic), which are characterised by high resistance to high-energy impact concentrated in a small area. The technological tests carried out in the project mainly concerned the development of a new container and industrial technology of armour plates production and their application in the armour of this container. Based on the results of investigation of the semi-industrial scale material, the optimum chemical composition for industrial scale melting and casting was determined. An industrial technology for the production of plates of nano-structured bainitic steel was developed, which includes the following processes: smelting and casting, preliminary heat treatment and ingot hot processing, as well as hot rolling, final heat treatment, and surface treatment. A test batch of the material in the form of 1500×2470 mm armoured plates was fabricated under industrial conditions. The final result of the project is a container armoured with bainitic nanostructured steel plates with implementation documentation and a technology for producing armoured plates from this steel under the technical and technological conditions of domestic steel manufacturers.


2021 ◽  
Author(s):  
Lunwen Zhang ◽  
Xiaodong Xue ◽  
Min Gao ◽  
Jinxiu Zhao ◽  
Tao Yan ◽  
...  

The industrial-scale NH3 production still heavily depends on the Haber-Bosch process which demands not only high energy consumption but emits a large amount of CO2. Electrochemical fixation of N2 to...


Author(s):  
Yuyao Ji ◽  
LEI Li ◽  
Wendong Cheng ◽  
Yu Xiao ◽  
Chengbo Li ◽  
...  

The Haber–Bosch process for industrial-scale NH3 production suffers from high energy consume and serious CO2 emission. Electrochemical N2 reduction is an attractive carbon-neutral alternative for NH3 synthesis but severely challenged...


2020 ◽  
Vol 12 (2) ◽  
pp. 696 ◽  
Author(s):  
Elżbieta Stanaszek-Tomal

The right selection of building materials plays an important role when designing a building to fall within the definition of sustainable development. One of the most commonly used construction materials is concrete. Its production causes a high energy burden on the environment. Concrete is susceptible to external factors. As a result, cracks occur in the material. Achieving its durability along with the assumptions of sustainable construction means there is a need to use an environmentally friendly and effective technique of alternative crack removal in the damaged material. Bacterial self-healing concrete reduces costs in terms of detection of damage and maintenance of concrete structures, thus ensuring a safe lifetime of the structure. Bacterial concrete can improve its durability. However, it is not currently used on an industrial scale. The high cost of the substrates used means that they are not used on an industrial scale. Many research units try to reduce production costs through various methods; however, bacterial concrete can be an effective response to sustainability.


1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document