Beneficial Effects of Flaxseed Oil (n-3 Fatty Acids) on Neurological Disorders

Author(s):  
Akhlaq A. Farooqui
2019 ◽  
Vol 26 (24) ◽  
pp. 4537-4558 ◽  
Author(s):  
Joana R. Campos ◽  
Patricia Severino ◽  
Classius S. Ferreira ◽  
Aleksandra Zielinska ◽  
Antonello Santini ◽  
...  

Linseed - also known as flaxseed - is known for its beneficial effects on animal health attributed to its composition. Linseed comprises linoleic and α-linolenic fatty acids, various dietary fibers and lignans, which are beneficial to health because they reduce the risk of cardiovascular diseases, as well as cancer, decreasing the levels of cholesterol and relaxing the smooth muscle cells in arteries increasing the blood flow. Essential fatty acids from flax participate in several metabolic processes of the cell, not only as structuring components of the cell membrane but also as storage lipids. Flax, being considered a functional food, can be consumed in a variety of ways, including seeds, oil or flour, contributing to basic nutrition. Several formulations containing flax are available on the market in the form of e.g. capsules and microencapsulated powders having potential as nutraceuticals. This paper revises the different lipid classes found in flaxseeds and their genomics. It also discusses the beneficial effects of flax and flaxseed oil and their biological advantages as ingredients in pharmaceuticals and in nutraceuticals products.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 295
Author(s):  
Asma Yakdhane ◽  
Sabrine Labidi ◽  
Donia Chaabane ◽  
Anita Tolnay ◽  
Arijit Nath ◽  
...  

Microencapsulation is a well-known technology for the lipid delivery system. It prevents the oxidation of fatty acids and maintains the quality of lipid after extraction from oil seed and processing. In flaxseed oil, the amount of ω-3 and ω-6 polyunsaturated fatty acids are 39.90–60.42% and 12.25–17.44%, respectively. A comprehensive review article on the microencapsulation of flaxseed oil has not been published yet. Realizing the great advantages of flaxseed oil, information about different technologies related to the microencapsulation of flaxseed oil and their characteristics are discussed in a comprehensive way, in this review article. To prepare the microcapsule of flaxseed oil, an emulsion of oil-water is performed along with a wall material (matrix), followed by drying with a spray-dryer or freeze-dryer. Different matrices, such as plant and animal-based proteins, maltodextrin, gum Arabic, and modified starch are used for the encapsulation of flaxseed oil. In some cases, emulsifiers, such as Tween 80 and soya lecithin are used to prepare flaxseed oil microcapsules. Physico-chemical and bio-chemical characteristics of flaxseed oil microcapsules depend on process parameters, ratio of oil and matrix, and characteristics of the matrix. As an example, the size of the microcapsule, prepared with spray-drying and freeze-drying ranges between 10–400 and 20–5000 μm, respectively. It may be considered that the comprehensive information on the encapsulation of flaxseed oil will boost the development of functional foods and biopharmaceuticals.


1986 ◽  
Vol 32 (2) ◽  
pp. 211-219 ◽  
Author(s):  
U.O. Barcelli ◽  
J. Miyata ◽  
Y. Ito ◽  
L. Gallon ◽  
P. Laskarzewski ◽  
...  

LWT ◽  
2021 ◽  
pp. 112064
Author(s):  
Ranko S. Romanić ◽  
Tanja Z. Lužaić ◽  
Bojana Đ. Radić

2016 ◽  
Vol 83 ◽  
pp. 162-168 ◽  
Author(s):  
Gabriela Câmara Vicente ◽  
André Manoel Correia-Santos ◽  
Akemi Suzuki ◽  
Juliana Saraiva dos Anjos ◽  
Luis Guillermo Coca Velarde ◽  
...  

2017 ◽  
Vol 8 (10) ◽  
pp. 3563-3575 ◽  
Author(s):  
Zara Bolger ◽  
Nigel P. Brunton ◽  
Frank J. Monahan

Direct or pre-emulsified flaxseed oil addition did not affect sensory properties of high omega-3/vitamin E sausages but encapsulation did, negatively.


2021 ◽  
Vol 2 (2) ◽  
pp. 12
Author(s):  
Samina Akbar ◽  
Muhammad Zeeshan Bhatti ◽  
Rida Fatima Saeed ◽  
Asma Saleem Qazi

Over the last decades, the polyunsaturated fatty acids (PUFAs) have been largely explored not only for their nutritional value but also for the numerous biological functions and therapeutic effects. The serum and erythrocyte levels of PUFAs depend on the genetic control of metabolism as well as the dietary intake and are considered to reflect the health and disease status of an individual. Two families of PUFAs, omega-3 (n-3) and omega-6 (n-6), have gained much attention because of their involvement in the production of bioactive lipid mediators and therefore, a balanced omega-6/omega-3 ratio is crucial in maintaining the overall health of an individual. Omega-3 PUFAs, notably eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have been shown to exert beneficial effects, possibly due to their lipid-lowering, anti-inflammatory, anti-hypertensive and cardioprotective effects, whereas omega-6 fatty acids such as arachidonic acid (ARA, 20:4n-6) exhibit the opposite properties. Even though, numerous epidemiological studies and clinical interventions have clearly established the effectiveness of omega-3 PUFAs in various pathological conditions including dyslipidemia, obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases, some controversies do exist about the beneficial effects of omega-3 PUFAs and need to be clarified. Larger clinical trials with extended follow-up periods are required along with a careful dose selection, in order to confirm the clinical significance and efficacy of omega-3 PUFAs as therapeutic agents.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2452
Author(s):  
Davit Pipoyan ◽  
Stella Stepanyan ◽  
Seda Stepanyan ◽  
Meline Beglaryan ◽  
Lara Costantini ◽  
...  

Health effects of trans fatty acids (TFAs) on human organisms can vary according to their type, structure, composition, and origin. Even though the adverse health effects of industrial TFAs (iTFAs) have been widely discussed, the health effects of natural TFAs (nTFAs) are still questionable. Hence, it is important to review the literature and provide an overall picture on the health effects of different TFAs coming from industrial and ruminant sources, underlining those types that have adverse health effects as well as suggesting methods for reducing their harmful effects. Multiple databases (PubMed, Medline, Cochrane Library, etc.) were searched with the key words “trans fatty acid sources”, “ruminant”, “industrial”, “conjugated trans linoleic acid”, “human”, “coronary heart disease”, “cancer”, etc. Reference lists of the studies were scanned discussing the health effects of iTFAs and nTFAs. The review of the literature showed that iTFAs are found to be more harmful than ruminant-produced nTFAs. Although several beneficial effects (such as reduced risk of diabetes) for nTFAs have been observed, they should be used with caution. Since during labeling it is usually not mentioned whether the TFAs contained in food are of industrial or natural origin, the general suggestion is to reduce their consumption.


Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Juneyoung Lee ◽  
Bhanu P Ganesh ◽  
Monica Spychala ◽  
Nagireddy Putluri ◽  
Nadim J Ajami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document