Recessive Mutations in Human Cancer Progression

1991 ◽  
pp. 163-171
Author(s):  
Webster K. Cavenee
Author(s):  
Anika Tabassum ◽  
Md. Nazmus Samdani ◽  
Tarak Chandra Dhali ◽  
Rahat Alam ◽  
Foysal Ahammad ◽  
...  

Abstract Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. Key messages • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1299
Author(s):  
Yi Wu ◽  
Peng Huang ◽  
Xian-Ping Dong

Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.


2016 ◽  
Vol 113 (42) ◽  
pp. E6409-E6417 ◽  
Author(s):  
David G. McFadden ◽  
Katerina Politi ◽  
Arjun Bhutkar ◽  
Frances K. Chen ◽  
Xiaoling Song ◽  
...  

Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.


2016 ◽  
Vol 44 (5) ◽  
pp. 1441-1454 ◽  
Author(s):  
Jennifer J. Huang ◽  
Gerard C. Blobe

Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.


Tumor Biology ◽  
2016 ◽  
Vol 37 (6) ◽  
pp. 7095-7108 ◽  
Author(s):  
Jing Chen ◽  
Kai Zhang ◽  
Yuejuan Xu ◽  
Yanping Gao ◽  
Chen Li ◽  
...  

F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1586
Author(s):  
Leonie R. Price ◽  
Javier Martinez

The emergence of new tobacco heating products and electronic nicotine delivery systems (ENDS) is changing the way humans are exposed to nicotine. The purpose of this narrative review is to provide a broad overview of published scientific literature with respect to the effects of nicotine on three key health-related areas: 1) cardiovascular risk, 2) carcinogenesis and 3) reproductive outcomes. These areas are known to be particularly vulnerable to the effects of cigarette smoke, and in addition, nicotine has been hypothesized to play a role in disease pathogenesis. Acute toxicity will also be discussed. The literature to February 2019 suggests that there is no increased cardiovascular risk of nicotine exposure in consumers who have no underlying cardiovascular pathology. There is scientific consensus that nicotine is not a direct or complete carcinogen, however, it remains to be established whether it plays some role in human cancer propagation and metastasis. These cancer progression pathways have been proposed in models in vitro and in transgenic rodent lines in vivo but have not been demonstrated in cases of human cancer. Further studies are needed to determine whether nicotine is linked to decreased fertility in humans. The results from animal studies indicate that nicotine has the potential to act across many mechanisms during fetal development. More studies are needed to address questions regarding nicotine exposure in humans, and this may lead to additional guidance concerning new ENDS entering the market.


2020 ◽  
Author(s):  
Ting Yang ◽  
Jian Ping Quo ◽  
Fan Li ◽  
Chao Xiu ◽  
Hua Wang ◽  
...  

Abstract Purpose: Osteosarcoma (OS) is a malignant tumor disease with high morbidity and mortality in children and adolescents. Evidence indicates that long non-coding RNAs (lncRNAs) may be important players in human cancer progression, including OS. In this study, we identified the role of lnc-DUXAP8 in the development of OS.Materials and Methods: Expression of lncRNA DUXAP8 was determined by real-time quantitative PCR and Western blotting in OS tissues. Cell proliferation was evaluated using CCK8 and colony formation assay; Transwell assay was conducted to measure cell invasion. Cell migration was evaluated using Wound Healing assay. The binding site between the lnc-DUXAP8 and miR-635 RNAs was evaluated using a luciferase reporter assay. Results: The expression of the lnc-DUXAP8 was significantly upregulated in OS samples and OS cell lines compared to normal tissue. High expression of lncRNA DUXAP8 was associated with shorter overall survival. Knockdown of lncRNA DUXAP8 inhibited proliferation and migration, and invasion in OS cells. More importantly, mechanism investigation revealed that lncRNA DUXAP8 was predominantly acted as a competing endogenous RNA (ceRNA) in OS by regulating miR-635/ TOP2A axis. Conclusion: LncRNA DUXAP8 is upregulated in OS, and LncRNA DUXAP8 knockdown plays a vital anti-tumor role in OS cell progression through a miR-635/ TOP2A axis. Our study suggests that LncRNA DUXAP8 may be a novel, promising biomarker for diagnosis and prognosis of OS.


2021 ◽  
Author(s):  
Rucha P.

MicroRNAs (miRNAs) are a category of highly conserved tiny non-coding RNAs that play a role in post-transcriptional gene regulation. Numerous studies have shown the role of dysregulated miRNA in a variety of illnesses, including human cancer. MiRNA is dysregulated by a variety of processes, including dysregulation of miRNA synthesis, aberrant miRNA transcription, dysregulated epigenetic modification, and chromosomal abnormalities. MiRNAs that are overexpressed have been shown to influence cancer's hallmarks. Recent research has shown miRNA's potential as a therapeutic target and biomarker. In this review, we discussed the synthesis and regulation of miRNA, as well as its dysregulation in human cancer and other disorders, as well as some of the therapeutic applications of miRNA.


Sign in / Sign up

Export Citation Format

Share Document