Stress Responses During Ageing: Molecular Pathways Regulating Protein Homeostasis

Author(s):  
Emmanouil Kyriakakis ◽  
Andrea Princz ◽  
Nektarios Tavernarakis
2020 ◽  
Vol 21 (21) ◽  
pp. 8014
Author(s):  
Sudip Dhakal ◽  
Ian Macreadie

Alzheimer’s Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine E. Larrimore ◽  
Natalia S. Barattin-Voynova ◽  
David W. Reid ◽  
Davis T. W. Ng

Abstract Background The protein homeostasis (proteostasis) network maintains balanced protein synthesis, folding, transport, and degradation within a cell. Failure to maintain proteostasis is associated with aging and disease, leading to concerted efforts to study how the network responds to various proteotoxic stresses. This is often accomplished using ectopic overexpression of well-characterized, model misfolded protein substrates. However, how cells tolerate large-scale, diverse burden to the proteostasis network is not understood. Aneuploidy, the state of imbalanced chromosome content, adversely affects the proteostasis network by dysregulating the expression of hundreds of proteins simultaneously. Using aneuploid haploid yeast cells as a model, we address whether cells can tolerate large-scale, diverse challenges to the proteostasis network. Results Here we characterize several aneuploid Saccharomyces cerevisiae strains isolated from a collection of stable, randomly generated yeast aneuploid cells. These strains exhibit robust growth and resistance to multiple drugs which induce various forms of proteotoxic stress. Whole genome re-sequencing of the strains revealed this was not the result of genetic mutations, and transcriptome profiling combined with ribosome footprinting showed that genes are expressed and translated in accordance to chromosome copy number. In some strains, various facets of the proteostasis network are mildly upregulated without chronic activation of environmental stress response or heat shock response pathways. No severe defects were observed in the degradation of misfolded proteins, using model misfolded substrates of endoplasmic reticulum-associated degradation or cytosolic quality control pathways, and protein biosynthesis capacity was not impaired. Conclusions We show that yeast strains of some karyotypes in the genetic background studied here can tolerate the large aneuploidy-associated burden to the proteostasis machinery without genetic changes, dosage compensation, or activation of canonical stress response pathways. We suggest that proteotoxic stress, while common, is not always an obligate consequence of aneuploidy, but rather certain karyotypes and genetic backgrounds may be able to tolerate the excess protein burden placed on the protein homeostasis machinery. This may help clarify how cancer cells are paradoxically both highly aneuploid and highly proliferative at the same time.


2020 ◽  
Vol 29 (156) ◽  
pp. 200126
Author(s):  
Martina Korfei ◽  
BreAnne MacKenzie ◽  
Silke Meiners

Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g. cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.


2008 ◽  
Vol 16 (3) ◽  
pp. 112-115 ◽  
Author(s):  
Stephan Bongard ◽  
Volker Hodapp ◽  
Sonja Rohrmann

Abstract. Our unit investigates the relationship of emotional processes (experience, expression, and coping), their physiological correlates and possible health outcomes. We study domain specific anger expression behavior and associated cardio-vascular loads and found e.g. that particularly an open anger expression at work is associated with greater blood pressure. Furthermore, we demonstrated that women may be predisposed for the development of certain mental disorders because of their higher disgust sensitivity. We also pointed out that the suppression of negative emotions leads to increased physiological stress responses which results in a higher risk for cardiovascular diseases. We could show that relaxation as well as music activity like singing in a choir causes increases in the local immune parameter immunoglobuline A. Finally, we are investigating connections between migrants’ strategy of acculturation and health and found e.g. elevated cardiovascular stress responses in migrants when they where highly adapted to the German culture.


2006 ◽  
Vol 22 (4) ◽  
pp. 259-267 ◽  
Author(s):  
Eelco Olde ◽  
Rolf J. Kleber ◽  
Onno van der Hart ◽  
Victor J.M. Pop

Childbirth has been identified as a possible traumatic experience, leading to traumatic stress responses and even to the development of posttraumatic stress disorder (PTSD). The current study investigated the psychometric properties of the Dutch version of the Impact of Event Scale-Revised (IES-R) in a group of women who recently gave birth (N = 435). In addition, a comparison was made between the original IES and the IES-R. The scale showed high internal consistency (α = 0.88). Using confirmatory factor analysis no support was found for a three-factor structure of an intrusion, an avoidance, and a hyperarousal factor. Goodness of fit was only reasonable, even after fitting one intrusion item on the hyperarousal scale. The IES-R correlated significantly with scores on depression and anxiety self-rating scales, as well as with scores on a self-rating scale of posttraumatic stress disorder. Although the IES-R can be used for studying posttraumatic stress reactions in women who recently gave birth, the original IES proved to be a better instrument compared to the IES-R. It is concluded that adding the hyperarousal scale to the IES-R did not make the scale stronger.


Sign in / Sign up

Export Citation Format

Share Document