scholarly journals Mutations and Copy Number Abnormalities of Hippo Pathway Components in Human Cancers

Author(s):  
Zhengjin He ◽  
Ruihan Li ◽  
Hai Jiang

The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.

Cancers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 94 ◽  
Author(s):  
Zaid Taha ◽  
Helena Janse van Rensburg ◽  
Xiaolong Yang

Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.


2011 ◽  
Vol 193 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Sandra Habbig ◽  
Malte P. Bartram ◽  
Roman U. Müller ◽  
Ricarda Schwarz ◽  
Nikolaos Andriopoulos ◽  
...  

The conserved Hippo signaling pathway regulates organ size in Drosophila melanogaster and mammals and has an essential role in tumor suppression and the control of cell proliferation. Recent studies identified activators of Hippo signaling, but antagonists of the pathway have remained largely elusive. In this paper, we show that NPHP4, a known cilia-associated protein that is mutated in the severe degenerative renal disease nephronophthisis, acts as a potent negative regulator of mammalian Hippo signaling. NPHP4 directly interacted with the kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), leading to derepression of these protooncogenic transcriptional regulators. Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcriptional activity. Consistent with these data, knockdown of NPHP4 negatively affected cellular proliferation and TEAD/TAZ activity, essentially phenocopying loss of TAZ function. These data identify NPHP4 as a negative regulator of the Hippo pathway and suggest that NPHP4 regulates cell proliferation through its effects on Hippo signaling.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1416
Author(s):  
Qiuping Liu ◽  
Xiaomeng Liu ◽  
Guanbin Song

The Hippo pathway is pervasively activated and has been well recognized to play critical roles in human cancer. The deregulation of Hippo signaling involved in cancer development, progression, and resistance to cancer treatment have been confirmed in several human cancers. Its biological significance and deregulation in cancer have drawn increasing interest in the past few years. A fundamental understanding of the complexity of the Hippo pathway in cancer is crucial for improving future clinical interventions and therapy for cancers. In this review, we try to clarify the complex regulation and function of the Hippo signaling network in cancer development, including its role in signal transduction, metabolic regulation, and tumor development, as well as tumor therapies targeting the Hippo pathway.


2021 ◽  
Author(s):  
Jonathan Eugene Phillips ◽  
Maribel Santos ◽  
Mohammed Kanchwala ◽  
Chao Xing ◽  
Duojia Pan

Many genes that function in animal development are present in the close unicellular relatives of animals, but little is known regarding the premetazoan function of these genes. Here, we develop techniques for genetic manipulation in the filasterean Capsaspora owczarzaki and use these tools to characterize the Capsaspora ortholog of the Hippo signaling nuclear effector YAP/TAZ/Yorkie (coYki). In contrast to its potent oncogene activity in metazoans, we show that coYki is dispensable for cell proliferation but regulates cytoskeletal dynamics and the morphology of multicellular aggregates in Capsaspora. Our results suggest an ancestral role for the Hippo pathway in cytoskeletal regulation, which was later co-opted to regulate cell proliferation in animals.


2017 ◽  
Vol 114 (8) ◽  
pp. 1934-1939 ◽  
Author(s):  
Xianjue Ma ◽  
Hongxiang Wang ◽  
Jiansong Ji ◽  
Wenyan Xu ◽  
Yihao Sun ◽  
...  

Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using aDrosophilainvasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identifybantam-Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis.


2014 ◽  
Vol 21 (2) ◽  
pp. 297-310 ◽  
Author(s):  
David Fu ◽  
Xiangmin Lv ◽  
Guohua Hua ◽  
Chunbo He ◽  
Jixin Dong ◽  
...  

The Hippo signaling pathway has been implicated as a conserved regulator of organ size in both Drosophila and mammals. Yes-associated protein (YAP), the central component of the Hippo signaling cascade, functions as an oncogene in several malignancies. Ovarian granulosa cell tumors (GCT) are characterized by enlargement of the ovary, excess production of estrogen, a high frequency of recurrence, and the potential for malignancy and metastasis. Whether the Hippo pathway plays a role in the pathogenesis of GCT is unknown. This study was conducted to examine the expression of YAP in human adult GCTs and to determine the role of YAP in the proliferation and steroidogenesis of GCT cells. Compared with age-matched normal human ovaries, GCT tissues exhibited higher levels of YAP expression. YAP protein was predominantly expressed in the nucleus of tumor cells, whereas the non-tumor ovarian stromal cells expressed very low levels of YAP. YAP was also expressed in cultured primary human granulosa cells and in KGN and COV434 GCT cell lines. siRNA-mediated knockdown of YAP in KGN cells resulted in a significant reduction in cell proliferation (P<0.001). Conversely, overexpression of wild type YAP or a constitutively active YAP (YAP1) mutant resulted in a significant increase in KGN cell proliferation and migration. Moreover, YAP knockdown reduced FSH-induced aromatase (CYP19A1) protein expression and estrogen production in KGN cells. These results demonstrate that YAP plays an important role in the regulation of GCT cell proliferation, migration, and steroidogenesis. Targeting the Hippo/YAP pathway may provide a novel therapeutic approach for GCT.


2019 ◽  
Vol 2 (4) ◽  
pp. e201900381 ◽  
Author(s):  
Stephan U Gerlach ◽  
Moritz Sander ◽  
Shilin Song ◽  
Héctor Herranz

One of the fundamental issues in biology is understanding how organ size is controlled. Tissue growth has to be carefully regulated to generate well-functioning organs, and defects in growth control can result in tumor formation. The Hippo signaling pathway is a universal growth regulator and has been implicated in cancer. In Drosophila, the Hippo pathway acts through the miRNA bantam to regulate cell proliferation and apoptosis. Even though the bantam targets regulating apoptosis have been determined, the target genes controlling proliferation have not been identified thus far. In this study, we identify the gene tribbles as a direct bantam target gene. Tribbles limits cell proliferation by suppressing G2/M transition. We show that tribbles regulation by bantam is central in controlling tissue growth and tumorigenesis. We expand our study to other cell cycle regulators and show that deregulated G2/M transition can collaborate with oncogene activation driving tumor formation.


2017 ◽  
Vol 114 (18) ◽  
pp. 4691-4696 ◽  
Author(s):  
Youngeun Kim ◽  
Wantae Kim ◽  
Yonghee Song ◽  
Jeong-Rae Kim ◽  
Kyungjoo Cho ◽  
...  

Hippo signaling controls the expression of genes regulating cell proliferation and survival and organ size. The regulation of core components in the Hippo pathway by phosphorylation has been extensively investigated, but the roles of ubiquitination−deubiquitination processes are largely unknown. To identify deubiquitinase(s) that regulates Hippo signaling, we performed unbiased siRNA screening and found that YOD1 controls biological responses mediated by YAP/TAZ. Mechanistically, YOD1 deubiquitinates ITCH, an E3 ligase of LATS, and enhances the stability of ITCH, which leads to reduced levels of LATS and a subsequent increase in the YAP/TAZ level. Furthermore, we show that the miR-21-mediated regulation of YOD1 is responsible for the cell-density-dependent changes in YAP/TAZ levels. Using a transgenic mouse model, we demonstrate that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, we find a strong correlation between YOD1 and YAP expression in liver cancer patients. Overall, our data strongly suggest that YOD1 is a regulator of the Hippo pathway and would be a therapeutic target to treat liver cancer.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sung Jun Bae ◽  
Lisheng Ni ◽  
Xuelian Luo

The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al., 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xue Hao ◽  
Shimin Wang ◽  
Yi Lu ◽  
Wentao Yu ◽  
Pengyue Li ◽  
...  

Tissue homeostasis and regeneration in the Drosophila midgut is regulated by a diverse array of signaling pathways including the Hippo pathway. Hippo signaling restricts intestinal stem cell (ISC) proliferation by sequestering the transcription co-factor Yorkie (Yki) in the cytoplasm, a factor required for rapid ISC proliferation under injury-induced regeneration. Nonetheless, the mechanism of Hippo-mediated midgut homeostasis and whether canonical Hippo signaling is involved in ISC basal proliferation are less characterized. Here we identify Lola as a transcription factor acting downstream of Hippo signaling to restrict ISC proliferation in a Yki-independent manner. Not only that Lola interacts with and is stabilized by the Hippo signaling core kinase Warts (Wts), Lola rescues the enhanced ISC proliferation upon Wts depletion via suppressing Dref and SkpA expressions. Our findings reveal that Lola is a non-canonical Hippo signaling component in regulating midgut homeostasis, providing insights on the mechanism of tissue maintenance and intestinal function.


Sign in / Sign up

Export Citation Format

Share Document