Seeing Through Cross-sections: Implementations of an Age-Old Graphical Form on Landscape Description

Author(s):  
Andrea Oldani
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5283
Author(s):  
Slawomir Blasiak

The purpose of this study was to develop a mathematical model for non-contacting face seals to analyze how their performance is affected by thermoelastic phenomena. The model was used to solve thermal conductivity and thermoelasticity problems. The primary goal was to calculate the values of thermal deformations of the sealing rings in a non-contacting face seal with a flexibly mounted rotor (FMR) for a turbomachine. The model assumes the conversion of mechanical energy into heat in the fluid film. The heat flux generated in the fluid film is transferred first to the sealing rings and then to the fluid surrounding them. Asymmetric distribution of temperature within the sealing rings leads to the occurrence of thermal stresses and, consequently, a change in the geometry of the rings. The model is solved analytically. The distributions of temperature fields for the sealing rings in the cross-sections are calculated using the Fourier-Bessel series as a superficial function of two variables (r,z). The thermoelasticity problems described by the Navier equations are solved by applying the Boussinesq harmonic functions and Goodier’s thermoelastic displacement potential function. The proposed method involves solving various theoretical and practical problems of thermoelasticity in FMR-type non-contacting face seals. The solution of the mathematical model was made use of analytical methods, and the most important obtained results are presented in graphical form, such as the temperature distributions and axial thermal distortions in cross-sections of the rings. The calculated thermal deformations of the sealing rings are used to determine the most important seal performance parameters such as the leakage rate and power loss. The article also presents a multi-criteria analysis of seal rings materials and geometry, which makes it easier to choose the type of materials used for the sliding rings.


Geophysics ◽  
1948 ◽  
Vol 13 (1) ◽  
pp. 58-85 ◽  
Author(s):  
Raul F. Hansen ◽  
Curtis H. Johnson

This paper is a report of observations of multiple reflections in seismograph work in Argentina, of successful methods of identifying them, and of unsuccessful attempts to eliminate them. The paper begins with generalizations regarding the expectancy of multiples and develops geometrically (using straight‐line paths) the relation between multiples and their primary reflections for the cases of multiple reflection between a horizon and the surface and between two horizons, as regards time of reflection, dip and average velocity. The importance of a sharp reflecting contrast at the surface is emphasized, and it is concluded that the base of weathering may be more important in the formation of multiples than the surface of the earth. Early observations of multiple reflections from a volcanic flow and from a shallow basement are described. Other areas showed discordant data on the seismograms and cross sections, which, if due to multiples, could only be caused by multiple reflections from good sedimentary reflectors. In these areas a method for identifying both types of multiple reflections by their low average velocity as obtained by shooting reflection velocity‐profiles was developed, the work being facilitated by considerable knowledge of velocity and section from previous refraction shooting. Though this reflection velocity‐profile method is considered essential to positive and detailed identification of multiples, two methods of multiple identification using ΔT variations in continuous profiling are described and the results of considerable work with one of them are reported in graphical form, showing not only a separation of multiple from real reflections but also the determination of the true velocity‐depth function by means of the real reflections so segregated. Experiments are briefly described in which variations in size or depth of shot and variations in filters were not effective in reducing the ratio of multiple reflections to real reflections. The paper closes with suggestions for identifying multiple reflections by their abnormal curvatures in discontinuous, symmetrical‐spread dip shooting, and for using primitive qualitative methods where the topography or subsurface are not suited to the quantitative methods developed here.


1972 ◽  
Vol 16 ◽  
pp. 63-73
Author(s):  
François Wuilleumier

AbstractThe new x-ray analysis method using photoeleetron spectrometry demands knowledge of differential photoionization cross sections of the subshells of the converter atoms used as intermediary between the x-ray spectrum and the photoelectron spectrum. These differential cross sections were determined for the most appropriate converter, the neon atom, in the energy range from 50 to 3000 eV. The total photoionization cross section was partitioned into contributions that arise from single ionization in the various subshells and from multiple processes. We present in tabular and graphical form: a) 1s, 2s and 2p total subshell cross sections; b) 1s, 2s and 2p differential cross sections at 54.73°; and c) ls, 2s and 2p differential cross sections at 90°. Accuracy is considered to be better than 3%, 7% and 5% at all energies for 1s, 2s and 2p cross sections, respectively.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


Author(s):  
R.P. Apkarian ◽  
J.S. Sanfilippo

The synthetic androgen danazol, is an isoxazol derivative of ethisterone. It is utilized in the treatment of endometriosis, fibrocystic breast disease, and has a potential use as a contraceptive. A study was designed to evaluate the ultrastructural changes associated with danazol therapy in a rat model. The preliminary investigation of the distal segment of the rat uterine horn was undertaken as part of a larger study intended to elucidate the effects of danazol on the female reproductive tract.Cross-sections (2-3 mm in length) of the distal segment of the uterine horn from sixteen Sprague-Dawley rats were prepared for SEM. Ten rats in estrus served as controls and six danazol treated rats were noted to have alterations of the estrus cycle i.e. a lag in cycle phase or noncycling patterns. Specimens were fixed in 3% glutaraldehyde in 0.05M phosphate buffer containing CaCl2 at pH 7.0-7.4 and chilled to 4°C. After a brief wash in distilled water, specimens were passed through a graded series of ethanol, critical point dryed in CO2 from absolute ethanol, and coated with 6nm Au. Observations were made with an IS1-40 SEM operated at 15kV.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
Xudong Weng ◽  
Peter Rez

In electron energy loss spectroscopy, quantitative chemical microanalysis is performed by comparison of the intensity under a specific inner shell edge with the corresponding partial cross section. There are two commonly used models for calculations of atomic partial cross sections, the hydrogenic model and the Hartree-Slater model. Partial cross sections could also be measured from standards of known compositions. These partial cross sections are complicated by variations in the edge shapes, such as the near edge structure (ELNES) and extended fine structures (ELEXFS). The role of these solid state effects in the partial cross sections, and the transferability of the partial cross sections from material to material, has yet to be fully explored. In this work, we consider the oxygen K edge in several oxides as oxygen is present in many materials. Since the energy window of interest is in the range of 20-100 eV, we limit ourselves to the near edge structures.


Sign in / Sign up

Export Citation Format

Share Document