Investigation and Management of Water Losses from Wet Infrastructure

Author(s):  
Nazih K. Shammas ◽  
Lawrence K. Wang ◽  
Mohamed A. Khadam ◽  
Yousef Al-Feraiheedi
Keyword(s):  
Author(s):  
Elena Makarycheva

The aim of the article is to develop a method for calculating water losses from irrigation channels in determining the permeability of rock in the zone of filtration flow on the basis of the law of infiltration A.N. Kostyakov using the results of studies of free filtration from pits and foundation pits in loess loams. Pressure movement of water in irrigation canals is subject to the laws of two-phase flow, in which – in contrast to the Darcy law for the zone of saturation plays an important role, the volume and its change in time. The filtration rate (VF) increases with increasing rock moisture (θ) along the S-curve, while the pressure gradient (I = dh/dz) decreases. The dependences of these parameters on the pressure are represented by power functions, and their product CDP = VFI does not change in time and can serve as a characteristic of the filtration flow under the channel. When installing paired piezometers near the water chore line in the channel and determining the graph I(t) by the value of the twophase flow constant CDP, it is possible to calculate the filtration rate at a number of times and the water losses during unsteady filtration. Water losses from the channels at equilibrium humidity increases with increasing head according to the formula A.N. Kostyakova, in which the water permeability of rocks is characterized by a steady filtration rate at a head of 1.0 m, and the gradient is the function of pressure. The application of the proposed method of calculating losses in the design of irrigation systems will increase the reliability of the justification of the volume of anti-filtration measures and the forecast of the groundwater level.


10.29007/gvnz ◽  
2018 ◽  
Author(s):  
Armando Di Nardo ◽  
Michele Di Natale ◽  
Anna Di Mauro ◽  
Eva Martínez Díaz ◽  
Jose Antonio Blázquez Garcia ◽  
...  

The recent development and applications of social network theory in many fields of engineering (electricity, gas, transport, water, etc.) allows both the understanding of networks and to improve their management. Social network theory coupled to the availability of real time data and big data analysis techniques can change drastically the traditional approaches to manage civil networks. Recently, some authors are working to apply this novel approach, based on social network theory, on the water distribution networks using: a) graph partitioning algorithms to define optimal district meter areas both for water losses identification and for water network protection, b) innovative topological, energy and hydraulic indices to analyze performance; and c) GIS (Geographical Information System) to provide a more effective display of results and to improve network behavior in specific operational conditions. In this paper, a novel release 3.5 of SWANP software, that implements all these features, was tested on a real large water network in Alcalá de Henares, Spain.


Author(s):  
Simona Popa-Albu ◽  
Mihaela Pisleaga ◽  
Adrian Tenchea

Author(s):  
Cristian Epifanio Toledo ◽  
João Carlos Mohn Nogueira ◽  
Alexandre De Amorim Camargo

The objective of this work was to propose and evaluate a model to estimate transit water losses and surface runoff in a Brazilian semi-arid basin, fundamental components in the hydrological studies of the region, such as in the verification of hydrological connectivity. The study area was the Orós Reservoir Basin, located in the state of Ceará. The modeling of transit water loss and surface runoff were developed based on the work of Araújo and Ribeiro (1996) and Peter et al. (2014). In the proposed model, the parameter of loss in transit (k) was estimated at 0.027 km-1 for a section of the river basin, and when simulated for other stretches it provided good flow results at the end of the stretch, obtaining an NSE of 82%. The value of the runoff coefficient was estimated at 3% and when evaluating a spatial variation of this coefficient in the basin, the values varied from 2% to 12%, and the use of specialized runoff coefficient (RC) values promoted a higher NSE in the discharge simulation in the basin. It is concluded that the proposed model to estimate transit water losses and surface runoff demonstrated a high efficiency in the simulation of hydrological processes. The basin of Orós reservoir presented a high variability of the coefficient of surface runoff, justifying the need for a greater spatiality of this coefficient in heterogeneous environments.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
H. J. Surendra ◽  
B. T. Suresh ◽  
T. D. Ullas ◽  
T. Vinayak ◽  
Vinay P. Hegde

AbstractWater companies and their consumers affected with leakages in water distribution system worldwide. This has attracted many practitioner’s attention as well as researchers over the past years. Selected study area suffers from water losses of about 10 to 15% which accounts to loss of about 9 to 9.75 million liters per month. The present study was under taken to understand, analyze and evaluate the losses and suggest preventive measures of wrapping and repair clamping for control of these losses. The assessment of water losses is done through comparative analysis of data using Microsoft Excel software. Population forecasting is done in context of assessing the amount of water lost that can be prevented in future decades, adjusting to increased water demand and losses. For better efficiency of the suggested methods, experimental analysis was carried out on a reduced scale model of a single stretched pipeline. Cost estimation of the preventive measures was done by obtaining information about the materials used by trading professionals.


Author(s):  
Devi Buehler ◽  
Nadine Antenen ◽  
Matthias Frei ◽  
Christoph Koller ◽  
Diederik P. L. Rousseau ◽  
...  

AbstractIn the scope of this study, a pilot facility for the recycling of laundry effluent was developed and tested. With the aim to enable nearly complete energy and water self-sufficiency, the system is powered by a photovoltaic plant with second-life batteries, treats the wastewater within the unit and constantly reuses the treated wastewater for washing in a closed cycle. The technology for wastewater treatment is based on a low-tech approach consisting of a physical/mechanical pre-treatment and biological treatment in trickling filter columns. The treatment process is operated in batch mode for a capacity of five washing cycles per day. During five weeks of operation water quality, energy consumption and production, water losses and washing performance were monitored. The system recovered 69% of the used water for the washing machine while treating the wastewater to the necessary water quality levels. The average COD removal rate per cycle was 92%. Energy analysis was based on modelled data of the monitored energy consumption. With the current set-up, an internal consumption rate of 80% and self-sufficiency of 30% were modelled. Future developments aim at increasing water and energy self-sufficiency and optimizing the water treatment efficiency.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2169
Author(s):  
Pauline Macharia ◽  
Nzula Kitaka ◽  
Paul Yillia ◽  
Norbert Kreuzinger

This study examined the current state of water demand and associated energy input for water supply against a projected increase in water demand in sub-Saharan Africa. Three plausible scenarios, namely, Current State Extends (CSE), Current State Improves (CSI) and Current State Deteriorates (CSD) were developed and applied using nine quantifiable indicators for water demand projections and the associated impact on energy input for water supply for five Water Service Providers (WSPs) in Kenya to demonstrate the feasibility of the approach based on real data in sub-Saharan Africa. Currently, the daily per capita water-use in the service area of four of the five WSPs was below minimum daily requirement of 50 L/p/d. Further, non-revenue water losses were up to three times higher than the regulated benchmark (range 26–63%). Calculations showed a leakage reduction potential of up to 70% and energy savings of up to 12 MWh/a. The projected water demand is expected to increase by at least twelve times the current demand to achieve universal coverage and an average daily per capita consumption of 120 L/p/d for the urban population by 2030. Consequently, the energy input could increase almost twelve-folds with the CSI scenario or up to fifty-folds with the CSE scenario for WSPs where desalination or additional groundwater abstraction is proposed. The approach used can be applied for other WSPs which are experiencing a similar evolution of their water supply and demand drivers in sub-Saharan Africa. WSPs in the sub-region should explore aggressive strategies to jointly address persistent water losses and associated energy input. This would reduce the current water supply-demand gap and minimize the energy input that will be associated with exploring additional water sources that are typically energy intensive.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1455
Author(s):  
George Karabourniotis ◽  
Georgios Liakopoulos ◽  
Panagiota Bresta ◽  
Dimosthenis Nikolopoulos

Leaves have evolved to effectively harvest light, and, in parallel, to balance photosynthetic CO2 assimilation with water losses. At times, leaves must operate under light limiting conditions while at other instances (temporally distant or even within seconds), the same leaves must modulate light capture to avoid photoinhibition and achieve a uniform internal light gradient. The light-harvesting capacity and the photosynthetic performance of a given leaf are both determined by the organization and the properties of its structural elements, with some of these having evolved as adaptations to stressful environments. In this respect, the present review focuses on the optical roles of particular leaf structural elements (the light capture module) while integrating their involvement in other important functional modules. Superficial leaf tissues (epidermis including cuticle) and structures (epidermal appendages such as trichomes) play a crucial role against light interception. The epidermis, together with the cuticle, behaves as a reflector, as a selective UV filter and, in some cases, each epidermal cell acts as a lens focusing light to the interior. Non glandular trichomes reflect a considerable part of the solar radiation and absorb mainly in the UV spectral band. Mesophyll photosynthetic tissues and biominerals are involved in the efficient propagation of light within the mesophyll. Bundle sheath extensions and sclereids transfer light to internal layers of the mesophyll, particularly important in thick and compact leaves or in leaves with a flutter habit. All of the aforementioned structural elements have been typically optimized during evolution for multiple functions, thus offering adaptive advantages in challenging environments. Hence, each particular leaf design incorporates suitable optical traits advantageously and cost-effectively with the other fundamental functions of the leaf.


1977 ◽  
Vol 42 (6) ◽  
pp. 909-914 ◽  
Author(s):  
M. B. Maron ◽  
J. A. Wagner ◽  
S. M. Horvath

To assess thermoregulatory responses occuring under actual marathon racing conditions, rectal (Tre) and five skin temperatures were measured in two runners approximately every 9 min of a competitive marathon run under cool conditions. Race times and total water losses were: runner 1 = 162.7 min, 3.02 kg; runner 2 = 164.6 min, 2.43 kg. Mean skin temperature was similar throughout the race in the two runners, although they exhibited a marked disparity in temperature at individual skin sites. Tre plateaued after 35--45 min (runner 1 = 40.0--40.1, runner 2 = 38.9--39.2 degrees C). While runner 2 maintained a relatively constant level for the remainder of the race, runner 1 exhibited a secondary increase in Tre. Between 113 and 119 min there was a precipitous rise in Tre from 40.9 to 41.9 degrees C. Partitional calorimetric calculations suggested that a decrease in sweating was responsible for this increment. However, runner 1's ability to maintain his high Tre and running pace for the remaining 44 min of the race and exhibit no signs of heat illness indicated thermoregulation was intact.


Sign in / Sign up

Export Citation Format

Share Document