Pressure Algometry and Tissue Characteristics: Improved Stimulation Efficacy by a New Probe Design

Author(s):  
S. Finocchietti ◽  
L. Arendt-Nielsen ◽  
T. Graven-Nielsen
2020 ◽  
Vol 29 (3) ◽  
pp. 1283-1300
Author(s):  
Xigrid T. Soto ◽  
Andres Crucet-Choi ◽  
Howard Goldstein

Purpose Preschoolers' phonological awareness (PA) and alphabet knowledge (AK) skills are two of the strongest predictors of future reading. Despite evidence that providing at-risk preschoolers with timely emergent literacy interventions can prevent academic difficulties, there is a scarcity of research focusing on Latinx preschoolers who are dual language learners. Despite evidence of benefits of providing Latinxs with Spanish emergent literacy instruction, few studies include preschoolers. This study examined the effects of a supplemental Spanish PA and AK intervention on the dual emergent literacy skills of at-risk Latinx preschoolers. Method A multiple probe design across four units of instruction evaluated the effects of a Spanish supplemental emergent literacy intervention that explicitly facilitated generalizations to English. Four Latinx preschoolers with limited emergent literacy skills in Spanish and English participated in this study. Bilingual researchers delivered scripted lessons targeting PA and AK skills in individual or small groups for 12–17 weeks. Results Children made large gains as each PA skill was introduced into intervention and generalized the PA skills they learned from Spanish to English. They also improved their English initial sound identification skills, a phonemic awareness task, when instruction was delivered in Spanish but with English words. Children made small to moderate gains in their Spanish letter naming and letter–sound correspondence skills and in generalizing this knowledge to English. Conclusion These findings provide preliminary evidence Latinx preschoolers who are dual language learners benefit from emergent literacy instruction that promotes their bilingual and biliterate development.


Author(s):  
Mark Kimball

Abstract This article presents a novel tool designed to allow circuit node measurements in a radio frequency (RF) integrated circuit. The discussion covers RF circuit problems; provides details on the Radio Probe design, which achieves an input impedance of 50Kohms and an overall attenuation factor of 0 dB; and describes signal to noise issues in the output signal, along with their improvement techniques. This cost-effective solution incorporates features that make it well suited to the task of differential measurement of circuit nodes within an RF IC. The Radio Probe concept offers a number of advantages compared to active probes. It is a single frequency measurement tool, so it complements, rather than replaces, active probes.


2019 ◽  
Author(s):  
Corey Peltier ◽  
Mindy E Lingo ◽  
Faye Autry-Schreffler ◽  
Malarie Deardorff ◽  
Leslie Mathews ◽  
...  

Students identified with a specific learning disability (SLD) experience difficulty with mathematical problem solving. One specific intervention identified as a promising practice for students with a SLD is schema-based instruction (SBI). The current projects aimed to tests the efficacy of SBI under routine conditions. This extends prior literature by (a) using a teacher as the implementer, (b) allowing flexibility in the intervention protocol, (c) condensing the duration of intervention sessions, and (d) providing instruction in small group settings. In addition, we examined student problem solving performance on word problems requiring two-steps and combined schema structures. We used a multiple-probe design across three groups of fifth-grade participants (n = 7) receiving supplemental instruction in a resource room setting. Results indicated a functional relation between SBI and problem-solving performance for all students on simple structure word problems, with the magnitude of effects varying across cases. The NAP, Tau, and BC-SMD effect sizes were used to quantify effects. Implications were discussed in regard to systematic replication and conditions that may impact fidelity.


Author(s):  
Valeria Vendries ◽  
Tamas Ungi ◽  
Jordan Harry ◽  
Manuela Kunz ◽  
Jana Podlipská ◽  
...  

Abstract Purpose Osteophytes are common radiographic markers of osteoarthritis. However, they are not accurately depicted using conventional imaging, thus hampering surgical interventions that rely on pre-operative images. Studies have shown that ultrasound (US) is promising at detecting osteophytes and monitoring the progression of osteoarthritis. Furthermore, three-dimensional (3D) ultrasound reconstructions may offer a means to quantify osteophytes. The purpose of this study was to compare the accuracy of osteophyte depiction in the knee joint between 3D US and conventional computed tomography (CT). Methods Eleven human cadaveric knees were pre-screened for the presence of osteophytes. Three osteoarthritic knees were selected, and then, 3D US and CT images were obtained, segmented, and digitally reconstructed in 3D. After dissection, high-resolution structured light scanner (SLS) images of the joint surfaces were obtained. Surface matching and root mean square (RMS) error analyses of surface distances were performed to assess the accuracy of each modality in capturing osteophytes. The RMS errors were compared between 3D US, CT and SLS models. Results Average RMS error comparisons for 3D US versus SLS and CT versus SLS models were 0.87 mm ± 0.33 mm (average ± standard deviation) and 0.95 mm ± 0.32 mm, respectively. No statistical difference was found between 3D US and CT. Comparative observations of imaging modalities suggested that 3D US better depicted osteophytes with cartilage and fibrocartilage tissue characteristics compared to CT. Conclusion Using 3D US can improve the depiction of osteophytes with a cartilaginous portion compared to CT. It can also provide useful information about the presence and extent of osteophytes. Whilst algorithm improvements for automatic segmentation and registration of US are needed to provide a more robust investigation of osteophyte depiction accuracy, this investigation puts forward the potential application for 3D US in routine diagnostic evaluations and pre-operative planning of osteoarthritis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thiago Ferreira de Souza ◽  
Thiago Quinaglia Silva ◽  
Lígia Antunes-Correa ◽  
Zsofia D. Drobni ◽  
Felipe Osório Costa ◽  
...  

AbstractThere are limited data on the effects of anthracyclines on right ventricular (RV) structure, function, and tissue characteristics. The goal of this study was to investigate the effects of anthracyclines on the RV using cardiac magnetic resonance (CMR). This was a post-hoc analysis of a prospective study of 27 breast cancer (BC) patients (51.8 ± 8.9 years) using CMR prior, and up to 3-times after anthracyclines (240 mg/m2) to measure RV volumes and mass, RV extracellular volume (ECV) and cardiomyocyte mass (CM). Before anthracyclines, LVEF (69.4 ± 3.6%) and RVEF (55.6 ± 9%) were normal. The median follow-up after anthracyclines was 399 days (IQR 310–517). The RVEF reached its nadir (46.3 ± 6.8%) after 9-months (P < 0.001). RV mass-index and RV CM decreased to 13 ± 2.8 g/m2 and 8.13 ± 2 g/m2, respectively, at 16-months after anthracyclines. The RV ECV expanded from 0.26 ± 0.07 by 0.14 (53%) to 0.40 ± 0.1 (P < 0.001). The RV ECV expansion correlated with a decrease in RV mass-index (r = −0.46; P < 0.001) and the increase in CK-MB. An RV ESV index at baseline above its median predicted an increased risk of LV dysfunction post-anthracyclines. In BC patients treated with anthracyclines, RV atrophy, systolic dysfunction, and a parallel increase of diffuse interstitial fibrosis indicate a cardiotoxic response on a similar scale as previously seen in the systemic left ventricle.


Chromosoma ◽  
2021 ◽  
Vol 130 (1) ◽  
pp. 15-25
Author(s):  
Phuong T. N. Hoang ◽  
Jean-Marie Rouillard ◽  
Jiří Macas ◽  
Ivona Kubalová ◽  
Veit Schubert ◽  
...  

AbstractDuckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.


2021 ◽  
Vol 4 (1) ◽  
pp. 20
Author(s):  
Mujeeb Shittu ◽  
Tessa Steenwinkel ◽  
William Dion ◽  
Nathan Ostlund ◽  
Komal Raja ◽  
...  

RNA in situ hybridization (ISH) is used to visualize spatio-temporal gene expression patterns with broad applications in biology and biomedicine. Here we provide a protocol for mRNA ISH in developing pupal wings and abdomens for model and non-model Drosophila species. We describe best practices in pupal staging, tissue preparation, probe design and synthesis, imaging of gene expression patterns, and image-editing techniques. This protocol has been successfully used to investigate the roles of genes underlying the evolution of novel color patterns in non-model Drosophila species.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anna Kanegae ◽  
Yusuke Takata ◽  
Ippei Takashima ◽  
Shohei Uchinomiya ◽  
Ryosuke Kawagoe ◽  
...  

AbstractDespite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene–metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2′-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye’s electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.


Sign in / Sign up

Export Citation Format

Share Document