Resource Scarcity as a Stimulus for Advantageous Innovations

1996 ◽  
pp. 479-499
Author(s):  
Giancarlo Barbiroli ◽  
Andrea Raggi ◽  
Maurizio Fiorini
Keyword(s):  
2009 ◽  
Author(s):  
Anuj K. Shah ◽  
Eldar Shafir ◽  
Sendhil Mullainathan
Keyword(s):  

2021 ◽  
Vol 13 (10) ◽  
pp. 5751
Author(s):  
Alan Randall

The objective is to provide an interpretive reading of the literature in resource scarcity and sustainability theory from the nineteenth century to the present time, focusing on shifts that have occurred in problem definition, conceptual framing, research tools applied, findings, and their implications. My reading shows, as one would expect, that the discourse has become more technical and the analysis more sophisticated; special cases have been incorporated into the mainstream of theory; and, where relevant, dynamic formulations have largely supplanted static analysis. However, that is barely scratching the surface. Here, I focus on more fundamental shifts. Exhaustible and renewable resource analyses were incorporated into the mainstream theory of financial and capital markets. Parallels between the resources and environmental spheres were discovered: market failure concepts, fundamental to environmental policy, found applications in the resources sector (e.g., fisheries), and renewable resource management concepts and approaches (e.g., waste assimilation capacity) were adopted in environmental policy. To motivate sustainability theory and assessment, there has been a foundational problem shift from restraining human greed to dealing with risk viewed as chance of harm, and a newfound willingness to look beyond stochastic risk to uncertainty, ambiguity, and gross ignorance. Newtonian dynamics, which seeks a stable equilibrium following a shock, gave way to a new dynamics of complexity that valued resilience in the face of shocks, warned of potential for regime shifts, and focused on the possibility of systemic collapse and recovery, perhaps incomplete. New concepts of sustainability (a safe minimum standard of conservation, the precautionary principle, and planetary boundaries) emerged, along with hybrid approaches such as WS-plus which treats weak sustainability (WS) as the default but may impose strong sustainability restrictions on a few essential but threatened resources. The strong sustainability objective has evolved from maintaining baseline flows of resource services to safety defined as minimizing the chance of irreversible collapse. New tools for management and policy (sustainability indicators and downscaled planetary boundaries) have proliferated, and still struggle to keep up with the emerging understanding of complex systems.


2021 ◽  
Vol 13 (4) ◽  
pp. 1643
Author(s):  
Biao Li ◽  
Yunting Feng ◽  
Xiqiang Xia ◽  
Mengjie Feng

Along with industry upgrading and urbanization, the agricultural industry in China has been experiencing a stage of rapid development, on the bright side. On the other side, ecological environment deterioration and resource scarcity have become prevalent. Called by the current situation, circular agriculture arises as a direction for the industry to achieve sustainable development. This study develops an evaluation indicator system for circular agriculture using an entropy method, and evaluates factors that could drive the Chinese agricultural industry to achieve better performance. We employ the method using provincial data collected from the province of Henan, in which around 10% of the total grain in China is produced. It was found that agricultural technology and water resources per capita are positively related to circular performance in agriculture. In contrast, urbanization and arable land per capita are negatively related to circular performance. This article provides support to the government in policy-making related to the improvement of circular agricultural performance.


2021 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Alessandro Fontana ◽  
Andrea Barni ◽  
Deborah Leone ◽  
Maurizio Spirito ◽  
Agata Tringale ◽  
...  

Even if the economy nowadays is still locked into a linear model of production, tighter environmental standards, resource scarcity and changing consumer expectations are forcing organizations to find alternatives to lighten their impacts. The concept of Circular Economy (CE) is to an increasing extent treated as a solution to this series of challenges. That said, the multitude of approaches and definitions around CE and Life Cycle Extension Strategies (LCES) makes it difficult to provide (Small and Medium Enterprise) SMEs with a consistent understanding of the topic. This paper aims at bridging this gap by providing a systematic literature review of the most prominent papers related to the CE and lifetime extension, with a particular focus on the equipment and machinery sector. A taxonomy was used to define and cluster a subset of selected papers to build a homogeneous approach for understanding the multiple strategies used in the industry, and the standards in maintenance and remanufacturing strategies. As a final research step, we also propose a Strategy Characterization Framework (SCF) to build the ground for the selection of the best strategy to be applied for production equipment life cycle extension on several industrial use cases.


2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1651
Author(s):  
Cristina Arqueros ◽  
Félix Zamora ◽  
Carmen Montoro

Global population growth and water resource scarcity are significant social problems currently being studied by many researchers focusing on finding new materials for water treatment. The aim is to obtain quality water suitable for drinking and industrial consumption. In this sense, an emergent class of crystalline porous materials known as Covalent-Organic Frameworks (COFs) offers a wide range of possibilities since their structures can be designed on demand for specific applications. Indeed, in the last decade, many efforts have been made for their use in water treatment. This perspective article aims to overview the state-of-the-art COFs collecting the most recent results in the field for water detection of pollutants and water treatment. After the introduction, where we overview the classical design strategies on COF design and synthesis for obtaining chemically stable COFs, we summarize the different experimental methodologies used for COFs processing in the form of supported and free-standing membranes and colloids. Finally, we describe the use of COFs in processes involving the detection of pollutants in water and wastewater treatment, such as the capture of organic compounds, heavy metals, and dyes, the degradation of organic pollutants, as well as in desalination processes. Finally, we provide a perspective on the field and the potential technological use of these novel materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel A. Bedoya-Pérez ◽  
Michael P. Ward ◽  
Max Loomes ◽  
Iain S. McGregor ◽  
Mathew S. Crowther

AbstractShortly after the enactment of restrictions aimed at limiting the spread of COVID-19, various local government and public health authorities around the world reported an increased sighting of rats. Such reports have yet to be empirically validated. Here we combined data from multi-catch rodent stations (providing data on rodent captures), rodent bait stations (providing data on rodent activity) and residents’ complaints to explore the effects of a six week lockdown period on rodent populations within the City of Sydney, Australia. The sampling interval encompassed October 2019 to July 2020 with lockdown defined as the interval from April 1st to May 15th, 2020. Rodent captures and activity (visits to bait stations) were stable prior to lockdown. Captures showed a rapid increase and then decline during the lockdown, while rodent visits to bait stations declined throughout this period. There were no changes in the frequency of complaints during lockdown relative to before and after lockdown. There was a non-directional change in the geographical distribution of indices of rodent abundance suggesting that rodents redistributed in response to resource scarcity. We hypothesize that lockdown measures initially resulted in increased rodent captures due to sudden shortage of human-derived food resources. Rodent visits to bait stations might not show this pattern due to the nature of the binary data collected, namely the presence or absence of a visit. Relocation of bait stations driven by pest management goals may also have affected the detection of any directional spatial effect. We conclude that the onset of COVID-19 may have disrupted commensal rodent populations, with possible implications for the future management of these ubiquitous urban indicator species.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Erkkola ◽  
L Uusitalo ◽  
K Puputti ◽  
T Saari ◽  
P Jallinoja ◽  
...  

Abstract Background There is a paucity of comparable quantitative data on the prevalence and predictors of food insecurity in high-income countries. We applied the Household Food Insecurity Access Scale (HFIAS) to assess food insecurity among i) the Service Union United members; female-dominated, low-income employees of the Finnish private service sector, and ii) a convenience sample of Finnish food pantry clients. Methods The HFIAS classification was based on 9 validated questions capturing respondents' perceptions on food scarcity and behavioural responses to food insecurity due to lack of resources during the past month. The resulting indicator categorized respondents as food secure, and mildly, moderately and severely food insecure. We performed cross-tabulations and regression models to assess if education, housing, self-perceived health, income, and resource scarcity associated with levels of food insecurity. In addition, gender, age, and self-perceived disadvantage were assessed among the food pantry clients. Results Among the service workers (n = 6 573, 6% of those invited), 35% were food secure, 29% mildly or moderately food insecure, and 36% severely food insecure. The respective proportions were 28%, 26%, and 46% among the 129 food pantry clients. All assessed variables were associated to food insecurity status in the service workers (p < 0.01 for all). Among the food pantry clients, men (OR 1.60; 95% CI 1.09 − 4.80) and homeless/tenants in community rental units (OR 7.12; 95% CI 2.42 − 20.95) were most likely to experience severe food insecurity. Conclusions Alongside the food pantry clients the majority of the service workers demonstrated some degree of food insecurity, with a considerable proportion being severely food-insecure. This predominantly low-income group is subject to rapid changes in the labour market and social security systems. The data demonstrated that well-known SES indicators and self-perceived health are linked to food insecurity. Key messages Severe food insecurity was common among predominantly low-income private sector service workers and food pantry clients. Food insecurity is linked to SES indicators and wellbeing.


2021 ◽  
Vol 13 (2) ◽  
pp. 854
Author(s):  
Diana Movilla-Quesada ◽  
Aitor C. Raposeiras ◽  
Manuel Lagos-Varas ◽  
Osvaldo Muñoz-Cáceres ◽  
Valerio-Carlos Andrés-Valeri ◽  
...  

Chile is the first Latin American country to begin an “ecological overdraft”, as established by the Global Footprint Network (GFN). This implies that the country’s ecological footprint has exceeded the global average bio-capacity. The consumption of natural aggregates for construction in Chile has grown by around 6.6% in the last year, with around 120 million tons being extracted. Given the above, it is important to seek alternatives that help to minimize the problem of resource scarcity, as well as the recovery of industrial by-products and/or waste. The Chilean forestry sector has also grown in recent years, generating approximately 4000 metric tons of waste in 2018, which was deposited in landfills or disposed of on forest roads. The present research is focused on the reuse and possible recovery of ash from the incineration of cellulose as a filler in bituminous mixtures. We analyze the adhesiveness of the filler/bitumen system in dry and wet states, based on the Cantabro wear loss test. The results obtained show that the limit of the relation between the volumetric concentration and critical concentration (Cv/Cs) is 1 for the addition of ash and that concentrations lower than or equal to this value present controlled losses, with 1.00 being the optimal (Cv/Cs) ratio that allows better behavior against the effect of water.


Sign in / Sign up

Export Citation Format

Share Document