Improved Conventional Heating Systems — Demonstration Projects

1984 ◽  
pp. 797-798
Author(s):  
J. Durandet
2020 ◽  
Vol 330 ◽  
pp. 01002
Author(s):  
Abdelatif Merabtine ◽  
Abdelhamid Kheiri ◽  
Salim Mokraoui

Radiant floor heating systems (FHS) are considered as reliable heating systems since they ensure maintaining inside air temperature and reduce its fluctuations more efficiently than conventional heating systems. The presented study investigates the dynamic thermal response of an experimental FHS equipped with an anhydrite radiant slab. A new simplified model based on an analytical correlation is proposed to evaluate the heating radiant slab surface temperature and examine its thermal behavior under dynamic conditions. In order the validate the developed analytical model, an experimental scenario, under transient conditions, was performed in a monitored full-scale test cell. 2D and 3D numerical models were also developed to evaluate the accuracy of the analytical model. The method of Design of Experiments (DoE) was used to both derive meta-models, to analytically estimate the surface temperature, and perform a sensitivity study.


2018 ◽  
Vol 64 ◽  
pp. 07001
Author(s):  
D. Kerr William ◽  
M. Laverty David ◽  
J. Best Robert

This paper shows the effect on household greenhouse gas emissions if standalone or supplementary electric heating was to replace conventional heating methods, based on the present day electrical grid. While having the capability to improve future grid effectiveness and dynamic stability through the potential incorporation of demand side management (DSM). The All-Ireland system has been used in this paper as an example of a network which has been experiencing a significant increase in renewable generation. To show the potential of the electric heating methods the characteristics of existing domestic heating systems will be discussed, in terms of their heat output against their exhaust emissions (gCO2e/kWh). This will then be compared to that of the grid CO2 Intensity, showing the frequency and duration of the possible emission savings involved when using electricity as a main or supplementary heating source.


Author(s):  
C. C. Ngo ◽  
B. A. Alhabeeb ◽  
M. Balestrieri

Radiant floor heating systems have become popular due to their advantages over conventional heating systems in residential, commercial and industrial spaces. They are also used for snow and ice melting and turf conditioning applications. This paper presents a general study focuses on the design of radiant floor heating systems and investigates the effect of design parameters such as pipe spacing (ranging from 4 in. to 12 in.), pipe depth (ranging from 2.5 in. to 6.5 in.) and pipe temperature (45 °C, 65 °C and 85 °C) on the performance of radiant floor heating system embedded in different mediums (air, gravel and sand). The experimental results showed that a radiant heating system with pipes embedded at a shallow burial depth and placed closer together resulted with a more desired floor temperature distribution. The average floor temperature was also higher when the piping system was embedded in an air-filled space instead of a porous medium such as gravel or sand.


1988 ◽  
Vol 30 (3) ◽  
pp. 197-208 ◽  
Author(s):  
P.P. Votsis ◽  
C.J. Marquand ◽  
S.A. Tassou ◽  
D.R. Wilson

2020 ◽  
Vol 12 (22) ◽  
pp. 9772
Author(s):  
Myeong Gil Jeong ◽  
Dhanushka Rathnayake ◽  
Hong Seok Mun ◽  
Muhammad Ammar Dilawar ◽  
Kwang Woo Park ◽  
...  

High electricity consumption, carbon dioxide (CO2), and elevated noxious gas emission in the global livestock sector have a negative influence on environmental sustainability. This study examined the effects of a heating system using an air heat pump (AHP) on the energy saving, housing environment, and productivity traits of pigs. During the experimental period of 16 weeks, the internal temperature was found to be higher (p < 0.05) in the AHP house than in the conventional house. Moreover, the average electricity consumption and CO2 emission decreased by approximately 40 kWh and 19.32 kg, respectively, in the AHP house compared to the house with the conventional heating system. The average NH3 and H2S emissions were significantly lower in the AHP house (p < 0.05) during the growth stages. The AHP and conventional heating systems did not have a significant influence (p > 0.05) on the average ultra-fine dust (PM2.5) and formaldehyde level fluctuations. Furthermore, both heating systems did not show a significant difference in the average growth performance of pigs (p > 0.05), but the weight gain tended to increase in the AHP house. In conclusion, the AHP system has great potential to reduce energy consumption, greenhouse gas (GHG) emissions, and noxious gas emissions by providing economic benefits and an eco-friendly renewable energy source.


Author(s):  
Mohamed Hany Abokersh ◽  
Manel Vallès ◽  
Luisa F. Cabeza ◽  
Dieter Boer

Abstract Following the ambitious EU plan in cutting the greenhouse emission and replacing conventional heat sources through the presence of renewable energy share inside efficient district heating fields, seasonal storage coupled with district heating plants can have a viable contribution to this goal. However, the performance uncertainty combined with the inadequate assessment regarding the financial potential and the greenhouse emission reduction associated with the deployment of those innovate district heating systems represents a great challenge for sufficiently apply it. Our work tends to explore the prospects for wide-scale deployment of the seasonal storage in the residential sector in the German market. The proposed methodology framework correspondingly based on a multi-objective approach which is applied to optimize the cost against an aggregated environmental metric throughout the life cycle of the proposed system in comparison to their relative conventional heating systems. In this context, the proposed methodology framework is applied to Berlin as a representative for the central European climate zone with consideration for the seasonal and short-term storage systems and their relatively load profiles. The environmental improvement associated with the solar district heating system (SDHS) coupled with seasonal storage in the central European climate zone is heavily weighed enough in decision making for proposing SDHS as a sustainable solution replacing the conventional heat sources. Furthermore, the proposed methodology framework successes in eliminating the yearly system variation. Thus, the yearly solar fraction never goes down below than 97.8% in the investigated climate zone. Overall this study can assist in approving the feasibility of the SDHS with the goal of establishing a more sustainable energy infrastructure in Germany.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3161
Author(s):  
Nikola Fajkis ◽  
Monika Marcinkowska ◽  
Beata Gryzło ◽  
Anna Krupa ◽  
Marcin Kolaczkowski

We developed an efficient microwave-assisted three-step synthesis of zolpidem and its fluorinated analogues 1–3. The procedure relays on the utilization of easily accessible and inexpensive starting materials. Our protocol shows superior performance in terms of yield and purity of products, compared to conventional heating systems. Notably, the total time needed for reaction accomplishment is significantly lower comparing to oil bath heating systems. Finally, we have performed a detailed study on the preparation of zolpidem tartrate salt I, and we assessed its particle-sizes using a polarizing microscope. Our goal was to select the appropriate method that generates the acceptable particle-size, since the solid-size directly influences solubility in biological fluids and further bioavailability. We believe that the disclosed procedure will help to produce a lab-scale quantity of zolpidem and its fluorinated derivatives 1–3, as well as zolpidem tartrate salt I, with suitable fine-particle size for further biological experimentation.


Sign in / Sign up

Export Citation Format

Share Document