Effects of fibre length on tensile strength of carbon/glass fibre hybrid composites

1994 ◽  
Vol 29 (4) ◽  
pp. 973-977 ◽  
Author(s):  
M. Miwa ◽  
N. Horiba
Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1434
Author(s):  
Norlin Nosbi ◽  
Haslan Fadli Ahmad Marzuki ◽  
Muhammad Razlan Zakaria ◽  
Wan Fahmin Faiz Wan Ali ◽  
Fatima Javed ◽  
...  

The limited shelf life of carbon prepreg waste (CPW) from component manufacturing restricts its use as a composite reinforcement fibre on its own. However, CPW can be recycled with glass fibre (GF) reinforcement to develop a unique remediate material. Therefore, this study fabricated (1) a glass fibre-carbon prepreg waste reinforced polymer hybrid composite (GF-CPW-PP), (2) a polypropylene composite (PP), (3) a carbon prepreg waste reinforced composite (CPW-PP), and (4) a glass fibre reinforced composite (GF-PP) and reported their degradation and residual tension properties after immersion in water. The polymer hybrid composites were fabricated via extrusion technique with minimum reinforce glass-carbon prepreg waste content of 10 wt%. The immersion test was conducted at room temperature using distilled water. Moisture content and diffusion coefficient (DC) were determined based on water adsorption values recorded at 24-h intervals over a one-week period. The results indicated that GF-PP reinforced composites retained the most moisture post-168 h of immersion. However, hardness and tensile strength were found to decrease with increased water adsorption. Tensile strength was found to be compromised since pores produced during hydrolysis reduced interfacial bonding between glass fibre and prepreg carbon reinforcements and the PP matrix.


2003 ◽  
Vol 11 (5) ◽  
pp. 369-381
Author(s):  
Jeng-Shyong Lin

Improvement of the interfacial adhesion by heat treatment of glass fibre reinforced polypropylene composite was studied. Polypropylene blended with glass fibres was injection-molded. The molded parts were heat treated at various temperatures for various times. Characterization of the mechanical properties of the resulting samples was performed including measurement of the critical fibre length, and differential scanning calorimetry. The results show that the critical fibre length increases while the tensile strength decreases with increasing testing temperature. At 25 and 80°C, heat treatment can improve the tensile strength. At or above 120°C, certain treatment conditions cause the tensile strength to drop significantly.


Author(s):  
Gowkanapalli Ramachandra Reddy ◽  
Mala Ashok Kumar Kumar ◽  
Ati Ramesh ◽  
Mehaboob Basha ◽  
Nadadur Karthikeyan ◽  
...  

Performance of injection moulded short wollastonite fibre and chopped glass fibre reinforced hybrid epoxy composites was studied. The results showed that hybridisation of glass fibre and wollastonitewas in congruence to epoxy glass fibre composite system. Effect of fibre length, fibre orientation in matrix and analysis and fracture surface was undertaken. The mechanical properties of injection moulded, chopped glass fibre/wollastonite/epoxy hybrid composites were investigated by considering the effect of hybridisation by these two fillers. It was observed that the tensile, flexural, and impact properties of the filled epoxy were higher than those of unfilled epoxy. The effect of filler on epoxy matrix subjected to the tensile strength and modulus was studied and compared with the rule of mixture. The actual results are marginally low as compared with the values obtained by the rule of hybrid mixtures (RoHM). 


2020 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Lenir Abreu Júnior ◽  
Rodrigo Teixeira Freire ◽  
Pablo Resende Oliveira ◽  
André Luis Christoforo ◽  
Carlos Thomas Garcia ◽  
...  

This work investigates epoxy composites reinforced by randomly oriented, short glass fibres and silica microparticles. A full-factorial experiment evaluates the effects of glass fibre mass fraction (15 and 20 wt%) and length (5 and 10 mm), and the mass fraction of silica microparticles (5 and 10 wt%) on the apparent density and porosity, as well as the compressive and tensile strength and modulus of the hybrid composites. Hybrid epoxy composites present significantly higher tensile strength (9%) and modulus (57%), as well as compressive strength (up to 15%) relative to pure epoxy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2021 ◽  
Author(s):  
Laurent L'Entete ◽  
Hareenanden Ramasawmy

Abstract Composite materials made with synthetic fibres like E-glass, Kevlar or carbon have helped to provide a wide array of products to society with specific engineering properties. However, these materials have a high carbon footprint as well as being non-biodegradable. The use of natural fibre, as a substitution to these man-made fibres, has been studied and encouraging results are being obtained.In this study, the use of ‘Pandanus utilis’ fibre as a reinforcing agent in plastic was investigated with the aim of exploring specific properties such as the tensile strength of the fibre, its wettability and the effect of fibre length after treating the fibre with two different NaOH solutions. Results have shown that better reinforcement was obtained for the composites (11.10 ± 2.53MPa) with fibres subjected to a more aggressive treatment (2.5%NaOH for 2h) compared to the composite made with fibres having maximum tensile strength (168 ± 12MPa at 0.5% NaOH for 14h), due to a better hydrophilicity of the alkaline treated fibre (87.37° internal angle). Within the range of short chopped fibre length tested (6 to 15 mm), it was shown that there was a general decrease in the tensile strength of the composite.


In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


Sign in / Sign up

Export Citation Format

Share Document