Gut Health Function of Instant Dehydrated Rice Sticks Substituted with Resistant Starch Types 2 and 4

Author(s):  
Nisa Alfilasari ◽  
Piyarat Sirivongpaisal ◽  
Santad Wichienchot
2018 ◽  
Vol 154 (6) ◽  
pp. S-498 ◽  
Author(s):  
Sarah L. Eady ◽  
Alison Wallace ◽  
Chrissie A. Butts ◽  
Duncan Hedderley ◽  
Lynley Drummond ◽  
...  

2014 ◽  
Vol 112 (S2) ◽  
pp. S44-S49 ◽  
Author(s):  
Devin J. Rose

The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Abdulrahman Alzaabi ◽  
Barbara Fielding ◽  
Denise Robertson

AbstractFood processing has been shown to influence starch digestibility, due to the formation of indigestible starches known as resistant starch (RS). RS has been shown to have similar health promoting properties to those of insoluble dietary fibre. These beneficial effects include lower glycaemic response, improved insulin sensitivity, enhanced overall gut health, and better plasma lipid profile. Additionally, the presence of other nutrients such as proteins or lipids may also impact the amount of RS formed.The present work aimed to measure the effect of cooking and /or additional meal ingredients on the RS content of 5 different starchy meals, 3 made with pasta (one of which had cheese added) and 2 made with potato, using the Megazyme RS kit (K-RSTAR). The cooked meals were tested either freshly cooked, chilled overnight, or chilled overnight and reheated. Moreover, different amounts of fat were used in the test meals (10 g fat per 100 g pasta, 30 g fat per 100 g pasta, 5 g fat per 100 g potato and 10 g fat per 100 g potato) in order to examine the effect of the amount of fat on RS formation. The total number of meals tested was 15.The amount of RS in the 2 pasta meals without cheese were 40% and 44% higher in the chilled and reheated meals compared to the same meals freshly cooked for the 10 g and 30 g of fat meals, respectively. The chilled overnight meals were not different from the freshly cooked meals for both fat amounts. Moreover, the potato meals showed a more substantial difference between the meals for the two fat amounts. The chilled and reheated potato meals were 73% and 85% higher in RS content than the freshly cooked identical meal, in the 5 g and 10 g of fat, respectively. Additionally, the chilled potato meals had higher RS contents compared to freshly cooked potato meals (68% and 83%, respectively). Furthermore, the presence of protein reduced the total amount of digested starch and RS in all pasta meals when compared to the meals without cheese. The findings of this in-vitro investigation suggests that chilling and reheating starchy meals significantly increases their content of RS. Future work will determine if these in vitro findings will translate to health benefits in vivo.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 64-65
Author(s):  
Ruurd T Zijlstra ◽  
Janelle M Fouhse ◽  
Charlotte Maria Elisabeth Heyer ◽  
Felina Tan ◽  
Thavaratnam Vasanthan ◽  
...  

Abstract In swine production, use of feed antibiotics as antimicrobial growth promotant will be reduced; thus, feed alternatives to manage gut health are required to prevent post-weaning diarrhea. Dietary fiber, resistant starch, oligosaccharides, and exo-polysaccharides are carbohydrates are nutritional tools that may be part of managing gut health in pigs. Antibiotics are hypothesized to influence gut health via modulation of intestinal microbial profiles; fermentation and intestinal inflammation are considered important mechanisms. As alternative, dietary fiber sources differ in 2 key properties: fermentability and viscosity. Rapid fiber fermentation is associated with changes in microbial profiles and increased metabolite production. Recently, microbial composition was hypothesized to be less important, and it was thought that the focus should be on combined output of metabolites. Increased viscosity has been associated with increased gut content of virulence factors linked with diarrhea. Fiber properties may manipulate retention time and physico-chemical properties of the undigested residue. Starch is mostly digested and absorbed as glucose; however, resistant starch is not digested but fermented instead. Resistant starch acts as fermentable fiber but is unique, because it specifically increases digesta abundance of bifidobacteria that are associated with improved gut health. Oligosaccharides may be rapidly fermented and thereby influence intestinal microbial profiles and metabolite production. Raw materials and some feed additives both influence kinetics of fermentation and have prebiotic activity. Their kinetics of fermentation should be quantified so that it can be considered in feed formulation. Finally, exopolysaccharides from Lactobacillus reuteri and unique oligosaccharides may serve as scavenger molecules for pathogenic bacteria, e.g., enterotoxigenic Escherichia coli (ETEC), to bind to instead of adhering to the gut wall, thereby avoiding diarrhea initiation. In conclusion, dietary fiber and other carbohydrates may be important solutions to maintain gut health when antibiotics are removed as growth promotants from swine feeds.


Proceedings ◽  
2019 ◽  
Vol 37 (1) ◽  
pp. 23
Author(s):  
Wallace ◽  
Eady ◽  
Butts ◽  
Hedderley ◽  
Drummond ◽  
...  

Functional gastrointestinal disorders including constipation affect up to 14% of the world’s population. [...]


2015 ◽  
Vol 6 (2) ◽  
pp. 198-205 ◽  
Author(s):  
Michael J Keenan ◽  
June Zhou ◽  
Maren Hegsted ◽  
Christine Pelkman ◽  
Holiday A Durham ◽  
...  

2013 ◽  
Vol 110 (6) ◽  
pp. 1068-1074 ◽  
Author(s):  
Abby S. Klosterbuer ◽  
Meredith A. J. Hullar ◽  
Fei Li ◽  
Elizabeth Traylor ◽  
Johanna W. Lampe ◽  
...  

Fibre has been shown to exert a number of benefits on gastrointestinal (GI) health, yet its intake is low. Addition of novel fibres to food products may increase fibre intake and improve gut health. The objective of the present study was to evaluate the influence of three novel fibres on GI outcomes in healthy human subjects. A total of twenty healthy participants (ten men and ten women) with normal BMI (23 (sem 2) kg/m2) participated in the present randomised, double-blind, cross-over study with five treatment periods. Participants consumed a maltodextrin control or 20–25 g/d fibre from soluble maize fibre (SCF) or resistant starch (RS), alone or in combination with pullulan (SCF+P and RS+P). The treatment periods were 7 d with a 3-week washout between the periods. Stool samples were collected on day 7 of each period, and GI tolerance was assessed via a questionnaire on days 1 and 6. There were no treatment differences in stool weight or consistency. SCF significantly reduced stool pH and increased total SCFA production compared with RS and control. RS+P significantly increased the percentage of butyrate compared with all the other treatments. Overall, GI symptoms were minimal. SCF+P led to the highest GI score on day 1, while RS+P had the highest score on day 6. Both SCF treatments caused a significant shift in the gut microbial community. These functional fibres are generally well tolerated, have minimal effects on laxation and may lead to beneficial changes in SCFA production in healthy adults.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 583-583
Author(s):  
Jiayue Guo ◽  
Alegna Reyes ◽  
Alyssa Gutierrez ◽  
Lingyan Kong

Abstract Objectives Retardation of starch digestion is an effective way of optimizing glycemic response. As the non-digestible portion of starch, resistant starch (RS) is associated with several beneficial effects such as regulating blood glucose level and improving gut health. Although all types of RS demonstrate such health benefits, different subtypes and structures may lead to variations in the digestibility profile. The aim of this study was to investigate and compare the in vitro digestibility of type 2 RS (RS2), type 3 RS (RS3), and novel type 5 RS (RS5) produced by starch inclusion complexes with ascorbyl palmitate (AP) and palmitic acid (PA) as potential inhibitors or guest compounds. Methods Two RS2 samples (high amylose maize starch, HAMS; potato starch, PS) in both raw and cooked forms, and RS3 samples produced by retrogradation of the two starches were tested for in vitro enzymatic digestion. AP and PA were either added during the digestion of RS2 and RS3 samples as potential inhibitors or processed to form inclusion complexes with starch prior to digestion as guest compounds of RS5. Starch digestibility profiles, represented by rapidly digestible starch (RDS), slowly digestible starch (SDS), total digestible starch (TDS), and RS contents, were determined. Results Cooking significantly increased the digestibility of RS2, while retrogradation (formation of RS3) inhibited the digestion by increasing the SDS and RS contents. The addition of AP significantly inhibited the in vitro digestion of RS2 (both raw and cooked HAMS and PS) and RS3 (retrograded HAMS and PS). The digestibility profile of RS5 produced by forming starch inclusion complexes with AP and PA was comparable to that of RS3, which exhibited higher SDS and RS contents as compared to cooked RS2. Conclusions AP as a bioactive guest compound could inhibit the in vitro digestion of raw and cooked RS2 and RS3. RS5 produced by forming starch inclusion complexes with AP and PA presented comparable digestibility with RS3, and higher SDS and RS contents as compared to cooked RS2. Since raw RS2 is not normally consumed in daily life, RS3 and RS5 could serve as better choices for daily consumption. In addition, adding certain bioactive food components could compensate for RS loss, suggesting a practical way of modulating glycemic response. Funding Sources University of Alabama Emerging Scholar Program and Faculty Start-up Fund.


2019 ◽  
Vol 55 (1) ◽  
pp. 239-247 ◽  
Author(s):  
María Jimena Correa ◽  
Leda Giannuzzi ◽  
Adriana R. Weisstaub ◽  
Angela Zuleta ◽  
Cristina Ferrero

2014 ◽  
Vol 3 ◽  
Author(s):  
Alison N. Beloshapka ◽  
Lucille G. Alexander ◽  
Preston R. Buff ◽  
Kelly S. Swanson

AbstractThe benefits of whole grain consumption have been studied in human subjects, but little research exists on their effects in dogs. The objective of the present study was to test the effects of resistant starch (RS) in the diet of healthy adult dogs. Twelve adult Miniature Schnauzer dogs (eight males, four females; mean age: 3·3 (1·6) years; mean body weight: 8·4 (1·2) kg; mean body condition score: D/ideal) were randomly allotted to one of three treatment groups, which consisted of different amounts of RS supplied in a biscuit format. Dogs received either 0, 10 or 20 g biscuits per d (estimated to be 0, 2·5 or 5 g RS per d) that were fed within their daily energetic allowance. A balanced Latin square design was used, with each treatment period lasting 21 d (days 0–17 adaptation; days 18–21 fresh and total faecal collection). All dogs were fed the same diet to maintain body weight throughout the study. Dogs fed 5 g RS per d had lower (P = 0·03) fat digestibility than dogs fed 0 gRS per d, but DM, organic matter and crude protein digestibilities were not affected. Faecal fermentative end-products, including SCFA and branched-chain fatty acids, ammonia, phenols and indoles, and microbial populations were not affected. The minor changes observed in the present study suggest the RS doses provided to the dogs were too low. Further work is required to assess the dose of RS required to affect gut health.


Sign in / Sign up

Export Citation Format

Share Document