scholarly journals Printable anisotropic magnetoresistance sensors for highly compliant electronics

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
Eduardo Sergio Oliveros Mata ◽  
Gilbert Santiago Cañón Bermúdez ◽  
Minjeong Ha ◽  
Tobias Kosub ◽  
Yevhen Zabila ◽  
...  

AbstractPrinted electronics are attractive due to their low-cost and large-area processing features, which have been successfully extended to magnetoresistive sensors and devices. Here, we introduce and characterize a new kind of magnetoresistive paste based on the anisotropic magnetoresistive (AMR) effect. The paste is a composite of 100-nm-thick permalloy/tantalum flakes embedded in an elastomer matrix, which promotes the formation of appropriately conductive percolation networks. Sensors printed with this paste showed stable magnetoresistive properties upon mechanical bending. The AMR value of this sensor is $$0.34\%$$ 0.34 % in the field of 400 mT. Still, the response is stable and allows to resolve sub-mT field steps. When printed on ultra-thin 2.5-$$\upmu \hbox {m}$$ μ m -thick Mylar foil, the sensor can be completely folded without losing magnetoresistive performance and mechanically withstand $$20\, \upmu {\hbox {m}}$$ 20 μ m bending radius. The developed compliant printed AMR sensor would be attractive to implement on curved and/or dynamic bendable surfaces for on-skin applications and interactive printed electronics.

MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 471-475 ◽  
Author(s):  
Marc Chason ◽  
Daniel R. Gamota ◽  
Paul W. Brazis ◽  
Krishna Kalyanasundaram ◽  
Jie Zhang ◽  
...  

AbstractDevelopments originally targeted toward economical manufacturing of telecommunications products have planted the seeds for new opportunities such as low-cost, large-area electronics based on printing technologies. Organic-based materials systems for printed wiring board (PWB) construction have opened up unique opportunities for materials research in the fabrication of modular electronic systems.The realization of successful consumer products has been driven by materials developments that expand PWB functionality through embedded passive components, novel MEMS structures (e.g., meso-MEMS, in which the PWB-based structures are at the milliscale instead of the microscale), and microfluidics within the PWB. Furthermore, materials research is opening up a new world of printed electronics technology, where active devices are being realized through the convergence of printing technologies and microelectronics.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Author(s):  
Yi Zheng ◽  
Zhi-Zhu He ◽  
Jun Yang ◽  
Jing Liu

The advancement of printed electronics technology has significantly facilitated the development of electronic engineering. However, so far there still remain big barriers to impede the currently available printing technologies from being extensively used. Many of the difficulties came from the factors like: complicated ink-configurations, high post-treatment temperature, poor conductivity in room temperature and extremely high cost and time consuming fabrication process. From an alternative strategy, our recently invented desktop liquid metal printer offered a flexible way to better address the above deficiencies. Through modifying the system developed in the authors’ lab, here we demonstrated the feasibility of the method in quickly and reliably printing out various large area electronic circuits. Particularly, the liquid metal ink made of GaIn24.5 alloy, with a high electrical resistivity of 2.98×10−7 Ω·m, can be rapidly printed on polyvinyl chloride (PVC) substrate with maximum sizes spanning from centimeter size to meter large. Most important of all, all these manufactures were achieved at an extremely low cost level which clearly shows the ubiquitous value of the liquid metal printer. To evaluate the working performance of the present electronics fabrication method, the electrical resistance and wire width of the printed circuits were investigated under multiple overprinting cycles. For practical illustration purpose, LED lighting conductive patterns which can serve as a functional electronic decoration art were fabricated on the flexible plastic substrate. The present work sets up an example for directly making large-scale ending consumer electronics via a high-efficiency and low-cost way.


MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1871-1876 ◽  
Author(s):  
Chen Jiang ◽  
Hanbin Ma ◽  
Arokia Nathan

Abstract:All-inkjet-printed organic thin-film transistors take advantage of low-cost fabrication and high compatibility to large-area manufacturing, making them potential candidates for flexible, wearable electronics. However, in real-world applications, device instability is an obstacle, and thus, understanding the factors that cause instability becomes compelling. In this work, all-inkjet-printed low-voltage organic thin-film transistors were fabricated and their stability was investigated. The devices demonstrate low operating voltage (<3 V), small subthreshold slope (128 mV/decade), good mobility (0.1 cm2 V−1 s−1), close-to-zero threshold voltage (−0.16 V), and high on/off ratio (>105). Several aspects of stability were investigated, including mechanical bending, shelf life, and bias stress. Based on these tests, we find that water molecule polarization in dielectrics is the main factor causing instability. Our study suggests use of a printable water-resistant dielectric for stability enhancement for the future development of all-inkjet-printed organic thin-film transistors.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000935-000939
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity would be critical for low-cost printed electronics. In view of printability, conductivity, and electrical stability, metal such as gold or silver derived from solution-deposited precursor compositions would be an ideal candidate. Xerox has been exploring the use of silver nanoparticles as conductor precursor composition for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at low temperature (∼ 120 °C) for high conductivity (&gt;10000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates which allows for large-area, defect-free source drain arrays to be printed with a narrow and uniform channel length.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3477 ◽  
Author(s):  
Vasiliy I. Popov ◽  
Igor A. Kotin ◽  
Nadezhda A. Nebogatikova ◽  
Svetlana A. Smagulova ◽  
Irina V. Antonova

A comparison of the structure and sensitivity of humidity sensors prepared from graphene (G)-PEDOT: PSS (poly (3,4-ethylenedioxythiophene)) composite material on flexible and solid substrates is performed. Upon an increase in humidity, the G: PEDOT: PSS composite films ensure a response (a linear increase in resistance versus humidity) up to 220% without restrictions typical of sensors fabricated from PEDOT: PSS. It was found that the response of the examined sensors depends not only on the composition of the layer and on its thickness but, also, on the substrate used. The capability of flexible substrates to absorb the liquid component of the ink used to print the sensors markedly alters the structure of the film, making it more porous; as a result, the response to moisture increases. However, in the case of using paper, a hysteresis of resistance occurs during an increase or decrease of humidity; that hysteresis is associated with the capability of such substrates to absorb moisture and transfer it to the sensing layer of the sensor. A study of the properties of G: PEDOT: PSS films and test device structures under deformation showed that when the G: PEDOT: PSS films or structures are bent to a bending radius of 3 mm (1.5% strain), the properties of those films and structures remain unchanged. This result makes the composite humidity sensors based on G: PEDOT: PSS films promising devices for use in flexible and printed electronics.


MRS Advances ◽  
2018 ◽  
Vol 3 (32) ◽  
pp. 1837-1842 ◽  
Author(s):  
Charles Trudeau ◽  
Martin Bolduc ◽  
Patrick Beaupré ◽  
Jaime Benavides-Guerrero ◽  
Bruno Tremblay ◽  
...  

ABSTRACTNew routes in additive devices fabrication techniques and advances in printable materials are required to meet the ever increasing demands for low-cost and large-area flexible electronics. In particular, perovskite-based materials have gained an appeal due to their unique optoelectronics and ferroelectrics properties, which may replace p-n junction in semiconductor devices. Metal-organic methylammonium lead trihalide perovskite formulations have been extensively studied in the last few years as promising materials for use in printed electronics, which do not require high temperatures or vacuum environment, contrary to conventional semiconductor fabrication techniques. In this work, digital inkjet-printing in ambient atmosphere is proposed as a deposition pathway for the fabrication of perovskite active layers in photodetector and thin-film photovoltaic device architectures. The device architecture containing a printed perovskite active layer sandwiched between TiO2 and Spiro-OMeTAD as electron and hole transport layers, respectively, as well as layer-on-layer fabrication and responsivity spectra of the perovskite-based device are presented.


2019 ◽  
Vol 20 (9) ◽  
pp. 2124 ◽  
Author(s):  
Lixin Mo ◽  
Zhenxin Guo ◽  
Li Yang ◽  
Qingqing Zhang ◽  
Yi Fang ◽  
...  

Printed electronics on flexible substrates has attracted tremendous research interest research thanks its low cost, large area production capability and environmentally friendly advantages. Optimal characteristics of silver nanoparticles (Ag NPs) based inks are crucial for ink rheology, printing, post-print treatment, and performance of the printed electronics devices. In this review, the methods and mechanisms for obtaining Ag NPs based inks that are highly conductive under moderate sintering conditions are summarized. These characteristics are particularly important when printed on temperature sensitive substrates that cannot withstand sintering of high temperature. Strategies to tailor the protective agents capping on the surface of Ag NPs, in order to optimize the sizes and shapes of Ag NPs as well as to modify the substrate surface, are presented. Different (emerging) sintering technologies are also discussed, including photonic sintering, electrical sintering, plasma sintering, microwave sintering, etc. Finally, applications of the Ag NPs based ink in transparent conductive film (TCF), thin film transistor (TFT), biosensor, radio frequency identification (RFID) antenna, stretchable electronics and their perspectives on flexible and printed electronics are presented.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Kartik Goyal ◽  
Kyle Schulze ◽  
Curtis Hill

Abstract Printed electronics is a fastest growing and emerging technology that have shown much potential in several industries including automotive, wearables, healthcare, and aerospace. Its applications can be found not only in flexible but also in large area electronics. The technology provides an effective and convenient method to additively deposit conductive and insulating materials on any type of substrate. Comparing with traditional manufacturing processes, which involves chemical etching, this technology also comes to be relatively environmental friendly. Despite its status, it is not without its challenges. Starting from the material being compatible in the printer equipment to the point of achieving fine resolutions, and with excellent properties are some of the challenges that printed electronics face. Among the myriad of printing technologies such as Aerosol Jet, micro-dispensing, gravure printing, screen printing, Inkjet printing, Inkjet has gained much attention due to its low-cost, low material consumption, and roll-to-roll capability for mass manufacturing. The technology has been widely used in home and office, but recently gained interest in printed electronics in a research and development setting. Conductive materials used in Inkjet printing generally comprises of metal Nanoparticles that need to be thermally sintered for it to be conductive. The preferred metal of choice has been mostly silver due to its excellent electrical properties and ease in sintering. However, silver comes to be expensive than its counterpart copper. Since copper is prone to oxidation, much focus has been given towards photonic sintering that involves sudden burst of pulsed light at certain energy to sinter the copper Nanoparticles. With this technique, only the printed material gets sintered in a matter of seconds without having a great impact on its substrate, due to which it is also preferred in low temperature applications. With all the knowledge, there is still a large gap in the process side with copper where it is important to look how the print process affects the resolution of the print along with the effect of post-print processes on electrical and mechanical properties. In this paper, a copper Inkjet ink is utilized for understanding the effect of Inkjet print parameters on the ejected droplet and its resolution. Post-print process is also quantified using a photonic sintering equipment for excellent electrical and mechanical properties. To demonstrate the complete process, commercial-off-the-shelf components will also be mounted on the additively printed pads via Inkjet. Statistically, control charting technique will be utilized to understand the capability of the Inkjet process.


2016 ◽  
Vol 2 (12) ◽  
pp. e1601660 ◽  
Author(s):  
Sanha Kim ◽  
Hossein Sojoudi ◽  
Hangbo Zhao ◽  
Dhanushkodi Mariappan ◽  
Gareth H. McKinley ◽  
...  

Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.


Sign in / Sign up

Export Citation Format

Share Document