Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

2015 ◽  
Vol 123 (3-4) ◽  
pp. 581-592
Author(s):  
Shengli Huang ◽  
Heping Liu ◽  
Devendra Dahal ◽  
Suming Jin ◽  
Shuang Li ◽  
...  
2013 ◽  
Vol 26 (23) ◽  
pp. 9563-9576 ◽  
Author(s):  
Andrew H. MacDougall ◽  
Michael Eby ◽  
Andrew J. Weaver

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall carbon sinks dominate, such that upon the cessation of anthropogenic emissions, atmospheric CO2 levels decrease over time. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here, the authors use the University of Victoria Earth System Climate Model (UVic ESCM), which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulfate aerosol emissions, whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions or even reverse this trend and cause CO2 to increase over time is assessed. It is found that a radiative forcing from non-CO2 gases of approximately 0.6 W m−2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the twenty-first century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m−2, the results suggest that if all CO2 and aerosols emissions were eliminated without also decreasing non-CO2 greenhouse gas emissions CO2 levels would increase over time, resulting in a small increase in climate warming associated with this positive permafrost–carbon feedback.


2021 ◽  
Author(s):  
Liang Guo ◽  
Laura Wilcox ◽  
Massimo Bollasina ◽  
Steven Turnock ◽  
Marianne Lund ◽  
...  

<p>The occurrence of severe haze events remains a serious problem in Beijing. Previous studies suggested that the frequency of weather patterns conducive to haze may increase with global warming. The new Shared Socioeconomic Pathways (SSPs) cover a wide range of uncertainties in aerosol and greenhouse gases emissions. Global and Chinese aerosol emissions are projected to decrease in most SSPs, while increases in greenhouse gases and global warming will continue for the rest of the century. The future, therefore, remains unclear.</p><p>We quantified the air pollution over Beijing and associated weather patterns using multiple indices calculated from the SSPs</p><p>We show that the occurrence of weather patterns conducive to the formation of haze significantly increases by the end of the century due to increases in greenhouse gases. Aerosol reductions also cause an increase in their occurrence, but reduce the severity of haze, and overall reducing aerosol emissions will be beneficial.</p>


2015 ◽  
Vol 11 (8) ◽  
pp. 1097-1105 ◽  
Author(s):  
R. V. Kochanov ◽  
I. E. Gordon ◽  
L. S. Rothman ◽  
S. W. Sharpe ◽  
T. J. Johnson ◽  
...  

Abstract. In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm−1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.


2018 ◽  
Vol 10 (1) ◽  
pp. 317-324 ◽  
Author(s):  
Angeline G. Pendergrass ◽  
Andrew Conley ◽  
Francis M. Vitt

Abstract. Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.


2021 ◽  
Author(s):  
Max Coleman ◽  
William Collins ◽  
Keith Shine ◽  
Nicolas Bellouin ◽  
Fiona O'Connor

<p>We investigate a novel use of model nudging to interrogate radiative rapid adjustment mechanisms and their magnitudes in response to aerosol emission perturbations in an earth system model. The radiative effects of a forcing agent can be quantified using the effective radiative forcing (ERF). ERF is the sum of the instantaneous radiative forcing, and radiative adjustments – changes in the atmosphere’s state in response to the initial forcing agent that cause a further radiative forcing. Radiative adjustments are particularly important for aerosols, which affect clouds both via microphysical interactions and changes in circulation, stratification and convection. Understanding the different adjustment mechanisms and their contribution to the total ERF of different aerosol emissions is necessary to better understand how their ERF may change with future changes in anthropogenic aerosol emissions. In this work we investigate radiative adjustments resulting from changes in atmospheric temperature (and the resulting changes in stratification and convection) due to anthropogenic sulphate and black carbon aerosol forcing.</p><p>We have conducted multiple global atmosphere-only time-slice experiments using the UK Earth System Model (UKESM1). Each experiment has either control, black carbon perturbed, or sulphur dioxide perturbed emissions; and either no nudging, nudged horizontal winds (uv), or nudged horizontal winds and potential temperature (uvθ). The difference between nudged uvθ minus nudged uv simulations determines the atmospheric temperature related adjustments arising from the aerosol perturbation. We have also conducted repeats of each simulation, varying the nudging setup to test sensitivity to different nudging parameters.</p><p>We find that nudging horizontal winds affects the resulting ERF very little, whereas nudging potential temperature as well can cause a significant difference from the non-nudged experiments, primarily in the cloud radiative effect. However, this difference is sensitive to the strength of the nudging applied, for which we consider the most appropriate value.</p>


2018 ◽  
Author(s):  
Benjamin S. Grandey ◽  
Daniel Rothenberg ◽  
Alexander Avramov ◽  
Qinjian Jin ◽  
Hsiang-He Lee ◽  
...  

Abstract. We quantify the effective radiative forcing (ERF) of anthropogenic aerosols modelled by the aerosol–climate model CAM5.3-MARC-ARG. CAM5.3-MARC-ARG is a new configuration of the Community Atmosphere Model version 5.3 (CAM5.3) in which the default aerosol module has been replaced by the two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC). CAM5.3-MARC-ARG uses the default ARG aerosol activation scheme, consistent with the default configuration of CAM5.3. We compute differences between simulations using year-1850 aerosol emissions and simulations using year-2000 aerosol emissions in order to assess the radiative effects of anthropogenic aerosols. We compare the aerosol column burdens, cloud properties, and radiative effects produced by CAM5.3-MARC-ARG with those produced by the default configuration of CAM5.3, which uses the modal aerosol module with three log-normal modes (MAM3). Compared with MAM3, we find that MARC produces stronger cooling via the direct radiative effect, stronger cooling via the surface albedo radiative effect, and stronger warming via the cloud longwave radiative effect. The global mean cloud shortwave radiative effect is similar between MARC and MAM3, although the regional distributions differ. Overall, MARC produces a global mean net ERF of −1.75 ± 0.04 W m−2, which is stronger than the global mean net ERF of −1.57 ± 0.04 W m−2 produced by MAM3. The regional distribution of ERF also differs between MARC and MAM3, largely due to differences in the regional distribution of the cloud shortwave radiative effect. We conclude that the specific representation of aerosols in global climate models, including aerosol mixing state, has important implications for climate modelling.


2020 ◽  
Author(s):  
Xiaoning Xie ◽  
Gunnar Myhre ◽  
Xiaodong Liu ◽  
Xinzhou Li ◽  
Zhengguo Shi ◽  
...  

Abstract. Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different low-level thermal feedbacks over the Asian continent and the surrounding ocean. This study examines the response of ASM to BC forcing in comparison with the effect of doubled greenhouse gases (GHGs) by analyzing the Precipitation Driver Response Model Intercomparison Project (PDRMIP) simulations under an extreme high BC level (10 times modern global BC emissions or concentrations, labeled by BC × 10) from nine global climate models (GCMs). The results show that although BC and GHGs both enhance the ASM precipitation minus evaporation (P–E) (a 13.6 % increase for BC forcing and 12.1 % for GHGs from the nine-model ensemble, respectively), there exists a much larger uncertainty in changes in ASM P–E induced by BC than by GHGs. The summer P–E is increased by 7.7 % to 15.3 % due to these two forcings over three sub-regions including East Asian, South Asian, and western North Pacific monsoon regions. Further analysis of moisture budget reveals distinct mechanisms controlling the increases in ASM P–E induced by BC and GHGs. The change in ASM P–E by BC is dominated by the dynamic effect due to the enhanced large-scale monsoon circulation, whereas the GHG-induced change is dominated by the thermodynamic effect through increasing atmospheric water vapor. Radiative forcing of BC significantly increases the upper-level atmospheric temperature over the Asian region to enhance the upper-level meridional land-sea thermal gradient (MLOTG), resulting in a northward shift of the upper-level subtropical westerly jet and an enhancement of the low-level monsoon circulation; whereas radiative forcing of GHGs significantly increases the tropical upper-level temperature, which reduces the upper-level MLOTG and suppresses the low-level monsoonal circulation. Hence, our results indicate a different mechanism of BC climate effects under the extreme high BC level, that BC forcing significantly enhances the upper-level atmospheric temperature over the Asian region, determining ASM changes, instead of low-level thermal feedbacks as indicated by previous studies.


2006 ◽  
Vol 40 (34) ◽  
pp. 6504-6515 ◽  
Author(s):  
A. Jayaraman ◽  
H. Gadhavi ◽  
D. Ganguly ◽  
A. Misra ◽  
S. Ramachandran ◽  
...  

2010 ◽  
Vol 10 (23) ◽  
pp. 11459-11470 ◽  
Author(s):  
B. S. Grandey ◽  
P. Stier

Abstract. Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.


Sign in / Sign up

Export Citation Format

Share Document